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Abstract

This paper examines how the structure of digital technology markets influences cyberse-
curity outcomes, focusing on how market concentration in critical sectors shapes the security
landscape. Cyberattacks pose a unique supply risk, driven by attackers’ strategic behavior and
the scalability of attacks when shared technology products have common vulnerabilities.

First, I present the outcome of a theoretical model comparing monopoly (full concentra-
tion) with competitive (full decentralization) market structures, identifying four externalities
that shape the relationship between market structure and cybersecurity outcomes. Two forces
in concentrated markets can improve cybersecurity, while two others can worsen it. I evaluate
the effectiveness of various cybersecurity policies within this model, under certain conditions
– particularly when security costs are high for users and firms – antitrust policy may be the
most effective solution for creating a stable and secure digital economy.

Then, I evaluate my theoretical findings in the empirical context of U.S. healthcare digiti-
zation in the twenty-first century. I explore how regulation and the nature of digital technology
have led to highly concentrated markets, leaving users with limited choices. Hospitals, driven
by regulation and positive network effects, often prioritize product compatibility over secu-
rity, reducing the incentive for technology vendors to focus on designing secure products. The
resulting regulatory and market environment has left hospitals vulnerable to large-scale cyber-
attacks, as they often rely on the same insecure technologies.

I investigate the trend of hospital-level cyberattacks since 2010 and shows that digitization
has unilaterally worsened cybersecurity outcomes. Using a revealed-security method, I find
heterogeneity in technology product and hospital risk. With the theoretical model, I find the
identified negative externalities are evident in the healthcare technology market, while posi-
tive externalities are weak or absent. A negative network effect occurs when hospitals use the
same technology as those that have already been breached, making everyone more vulnerable
to scaled attacks. Using the model, I find that overall, concentration has had a negative ef-
fect on cybersecurity outcomes, and that antitrust policy may be the key to preventing future
cyberattacks in the U.S. healthcare sector.

1 Introduction
Do you remember the 2021 holiday season? As the world recovered from a global pandemic,
only to be hit once more with variants that waved into new lockdowns, those of us here in New
York had to deal with a unique extra crisis: The Great Christmas Cream Cheese Catastrophe
of December 2021.

With no cream cheese to be found, panicked bagel shop and bakery owners called any
and every supplier in the tri-state area; customers debated whether tofu-based vegan cream
“cheese” was worth trying; and bakeries wondered what could possibly replace a holiday
cheesecake (New York Times (2021)).

“I was like, ‘What am I going to do this weekend?” the owner of Tompkins Square Bagels,
Christopher Pugliese – close to New York University’s Stern School of Business, where I have
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been a PhD student since 2019 – told the Times. “Four people just told me they can’t get me
cream cheese.”

‘Sunday bagels are sacred,” Mr. Pugliese said. “I hate feeling like I’ve let people down.”
The Times described cream cheese as another casualty of “supply chain issues,” that ever-

present post-pandemic problem. But Christmas cream cheese might have actually been de-
railed by another newly prevalent problem: a cyberattack.

In mid-October – about a month before the Times article, and around the time I first began
questioning how market concentration might be linked with poor cybersecurity – Schreiber
Foods, the second-largest producer of cream cheese, was hit by a cyberattack that halted pro-
duction completely at the company’s plants and distribution centers for at least five days (Wis-
consin State Farmer (2021)). Reports of a ransom of over one million dollars were not offi-
cially confirmed by the company. Because dairy is perishable, production was necessarily cut
– and, a few weeks later, the full effect was felt at the end of the supply chain: by New York
City bagel shops (Bloomberg (2021)).

The Great Christmas Cream Cheese Catastrophe of 2021 in New York City is perhaps
the only lighthearted recent example of a cyberattack. Everywhere else, more dire examples
abound.

In February 2024, a ransomware attack hit Change Healthcare, which operates the largest
clearinghouse for medical payments (Rundle and Stupp (2024)). The result was that almost
no insurance claims were processed, leaving literally millions of patients, providers, and phar-
macists in the lurch. Payments systems were taken offline, leaving providers to either take out
loans or shut down operations entirely as the flow of income was stopped.

Not coincidentally, Change is owned by the largest health insurer, UnitedHealth Group,
after it was rolled up into the company via vertical merger in February 2022 – exactly two
years before the crippling attack. That merger was challenged on the grounds that the data
UnitedHealth handled via Change would naturally come from its competitors and give the
insurer an unfair advantage, but the challenge was dismissed (Bartz (2022)).

The hacking group behind the attack allegedly received a $22 million ransomware pay-
ment (Greenberg (2024)) – one of the largest ever made. UnitedHealth confirmed a “substan-
tial portion” of the American population had their sensitive personal health information – not
to mention identity and insurance information – breached in the attack. An American Hospi-
tal Associated (AHA) survey found ninety-four percent of AHA hospitals reported a financial
impact from that single attack, with more than 33% reporting that half their revenue was im-
pacted (American Hospital Association (2024)). The Change attack, without exaggeration,
has affected five percent of U.S. GDP (Goldsmith (2024)). Hackers made off with millions,
UnitedHealth is still the market leader, but nursing homes and small practices are devastated.

How did we get here? The Change attack was large but neither an exception nor the largest
ever: since 2010 hackers have conducted at least five thousand unique attacks and stolen at
least 200 million sensitive records from just the U.S. healthcare system, typically for resale and
follow-up fraud. Over the last decade, healthcare providers have embraced digital technologies
and cybercriminals have embraced the sensitive health and financial information now at risk.

In the Change healthcare attack, the attack compromised credentials of a high-level ad-
ministrator through social engineering. The compromised application did not have multifactor
authentication (MFA), considered one of the most basic security provisions (Rundle (2024)).
Two fundamentally economic questions arise: why didn’t Change install MFA? And why was
that one mistake so devastating for the entire U.S. healthcare system?1

1The Wall Street Journal later covered the issue of concentrated markets in the article “Healthcare Sector Maps
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The reliance on digital technology, the extremely concentrated market with few alternative
options, a fragile and brittle supply chain with no room for error, the systems that malicious
attackers find both vulnerable and vulnerable – these seem to be basic facts of the economy
in 2024. Digital technologies have unlocked a new world economy, and even more so in
healthcare; to try to capture the effect of digitization in a few sentences is futile. However,
what digital technology provides, cybercrime threatens to sabotage. How do we design secure,
stable systems?

In this paper, I investigate, both theoretically and empirically, how market forces shape
cybersecurity outcomes for firms and users of digital technologies. Cyberattacks are a unique
type of risk in two specific ways. First, attacks are not random but rather strategic choices of
malicious attackers, who gather information about their targets and make choices to maximize
their payoffs – usually, to maximize destruction. Second, just like the digital technologies they
target, cyberattacks show scale: the same attack can be deployed repeatedly against multiple
targets, as long as the targets have the same vulnerability. Both factors suggest that the structure
of the market for technology products that facilitate cyberattacks – both in terms of market
concentration on just a few firms and in terms of networks – is crucial in determining the final
security of the overall industry.

The study of the economics of cybersecurity rests naturally at the intersection of the litera-
ture on the economics of digitization (low costs of replication and scale, the death of distance)
and the economics of crime (strategic criminal agents weighing costs and benefits). This paper
examines an unexpected effect of market concentration in the technology sector: the provision
of cybersecurity and the ultimate outcomes of data breaches on consumers. I also contribute
to the literature on the use and protection of data within healthcare.

In this paper, I first present a theoretical model illustrating four externalities that arise from
the relationship between market competition and cybercrime outcomes. Using the basic facts
of technology and cyberattacks, I describe two positive externalities that lead concentration to
improve and two negative externalities that worsen the impact of cybercrime on users. I then
show, through the model, how various commonly proposed cybersecurity policies would alter
final outcomes, evaluating each for efficiency and efficacy. I show that, if the cost of security
to users and firms is high enough, antitrust policy – i.e. moving to a decentralized system –
may be the most desirable path to a stable and secure economy.

I next apply the findings of the model to a key industry experiencing significant cyberat-
tacks: the U.S. healthcare sector. In the U.S., healthcare spending accounts for about one-sixth
of GDP. It is also increasingly the first stop for cybercriminals seeking to breach significant
amounts of important data. I study the role the digitization of healthcare has played in ensuing
cyberattacks, and in particular investigate how the concentrated market for Electronic Medical
Records (EMR) software has affected outcomes. I find that not only are some vendors sim-
ply worse than others, but also that there exists a negative network effect at the hospital-level
of using the same technology as another breached hospital, precisely because scaled attacks
put everyone at risk. Using the model, I find that overall, software market concentration has

Cyber Risk Posed by ‘Single Points of Failure.” I am quoted in the article as highlighting the issue of concentration
across many points in the healthcare system, including electronic medical records software:

Potential trouble spots include electronic medical records, said Chitra Marti, a doctoral student at New York Uni-
versity’s Stern School of Business who is studying the economics of cybersecurity in healthcare. The dominance of a
handful of suppliers of those records may be understandable—but it is still a risk point, she said.

“Just like in the payments processing world, doctors and nurses don’t necessarily want to be learning new software
every time they change jobs, but that’s the software that is responsible for holding and protecting our most sensitive
data,” Marti said.
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had a negative effect on cybersecurity outcomes, and that there is scope for antitrust policy in
preventing future cyberattacks in the U.S. healthcare sector.

2 The State of the Literature
In this section, I briefly and non-comprehensively review several related strands of literature
to contextualize the findings of this dissertation.

The general question of how market power negatively impacts economic outcomes, espe-
cially those that are outside typical price or quantity effects, has spurred a growing literature
on, broadly, the “non-market effects of market power.” One such non-market effect is the
proliferation of cyberattacks and general security concerns that can also be classified as “sup-
ply chain resilience.” The direct question of how economic incentives shape cybersecurity
outcomes itself rests on a literature spanning game theory, macroeconomics, and information
systems. Further, due to the importance of the healthcare sector and the data available, a few
have studied specifically how healthcare cyberattacks proliferate.

2.1 Non-Market Effects of Market Power
Market power, or the ability of firms to set positive markups and extract surplus from the
consumer, is generally associated with higher prices and lower quantities, an inefficient market
outcome. A growing literature studies the effects of market power outside of the market,
concerned with outcomes like productivity, innovation, and resilience against shocks.

While it seems clear that markets have become more concentrated, the effects have not
always aligned with the theoretically-predicted negative effects. Ganapati (2021) shows via
industry-level estimates that concentration increases were actually positively correlated with
productivity and real output growth, which suggests increases in consumer welfare thanks to
concentration. The literature there argues that barriers to entry essentially posit a selection
effect that weeds out unproductive firms, raising average productivity. Other papers, such
as Autor et al. (2020), suggest that “superstar” firms increase productivity and welfare despite
concentration. Others have shown that market concentration at the national level might actually
decrease concentration a household experiences at the local level (Benkard et al. (2021), Rossi-
Hansberg et al. (2021)). Many tech firms experience economies of scale thanks to growing
networks, resulting in natural monopolies that are highly productive. In particular, Farboodi
and Veldkamp (2021) show the not necessarily adverse consequences of market power accrued
through a data-heavy production process.

This paper contributes to the literature on unexpected effects of concentration by examin-
ing a different and perhaps under-studied mechanism: the market concentration may decrease
resilience to negative shocks (or equivalently amplify the effect of shocks), particularly those
of a malicious actor. I show how the accrual of market power by firms providing healthcare
technologies may lead to an underinvestment in product quality along the dimension of se-
curity. In addition to the usual effects of low quality, low security is unusual because of the
ability of attackers to engage in scaled attacks or to take advantage of contagion so that the
attack has follow-on effects on unrelated entities. That is, market power and underinvest-
ment in security then amplify negative shocks and decrease the resilience of the entire system.
Jamilov et al. (2021) confirm that firm-level cyber risk is positively correlated with firm size,
but do not further investigate the impact the attacks can have when they target larger firms.
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Other papers have explored shock amplification in the context of the COVID-19 pandemic
and monetary policy, which are exogenous, non-strategic shocks (Hyun et al. (2020), Wang
and Werning (2020), Mongey (2021)), and find mixed effects: market power can give the firm
room to absorb a shock, but downstream firms may suffer from a lack of options. Geer et al.
(2020) discuss non-technically what one might expect the effect of market concentration to be
on cybersecurity risk, splitting the effect into threats, vulnerabilities, and impacts and finding
qualitatively ambiguous effects of market concentration on each stage of the cyberattack.

2.2 Supply Chain Resilience & Shock Transmission
Relatedly, the paper thus aims to speak to the growing literature on the role of firm networks in
transmitting shocks throughout the economy. Oberfield (2018) looks broadly at how network
linkages can increase productivity. Hulten (1978) argued networks do not have first-order ef-
fects on efficient economies, a result that depended on the exogenous structure of the network.
Baqaee and Farhi (2019) and Lim (2018) examine lower-order terms and show that with en-
dogenous networks, shocks to an individual sector aggregate non-trivially to illustrate the role
of networks in the business cycle. Further, Duffie and Younger (2019) implicitly illustrate the
need for a federal backstop to contain the contagion of a financial cyber shock when interme-
diaries are not able to fully absorb shocks

As evidenced by the Change Healthcare attack, an attack on a crucial intermediary can have
downstream effects that touch firms at every level down: pharmacies, hospitals, healthcare
systems, insurers, and, at the end of the day, everyday patients. That is, network structure is
not a trivial artifact of a macroeconomy, but a crucial input into understanding the effects of
any kind of negative shock.

Many papers characterize underinvestment in security when transmission can occur through
a network, but for computational reasons typically take either nodes (firms) as identical or the
network as exogenous and symmetric (meaning nodes all have the same number of edges). Ga-
leotti et al. (2020), Goyal and Vigier (2014), and Larson (2011) endogenize network formation
but with identical nodes focus on symmetric networks to characterize the level of underinvest-
ment in security (the papers differ in the role of the attacker and specific payoff structure). Yet
in practice, firms are not symmetric, and thus the network has asymmetries that must influence
a strategic attacker in nontrivial ways. For example, the small firm SolarWinds was targeted
in December 2020 not just for its dramatic underinvestment in security but specifically for its
connections to Microsoft and the Pentagon, two large institutions from which the attackers
sought to extract value (Chesney (2021)).

Acemoglu et al. (2016) focus on asymmetric networks, but still take firms as identical and
thus must take the network as exogenous. Their model introduces the possibility of over-
investment by some firms while others underinvest. If a strategic attacker observes security
investment, then some firms over-invest in an effort to transfer risk onto other firms. In the
context of healthcare technology, that would suggest large vendors might be over-investing in
security as a deterrent, while small vendors would remain vulnerable.

However, it is clear that attacks target large or well-connected firms make more lucrative
targets, and thus firm size and market concentration should play a role in determining attack
patterns. Large firms have more value to protect, and thus have greater incentive to shift risk
to other firms if the attacker is constrained. O’Donnell (2008) shows how such size imbal-
ances can induce risk transference to illustrate how Apple products initially appeared to be
totally secure: Microsoft was the dominant platform and thus likely attracted more threats.

5



The Acemoglu model only incorporates network centrality, not firm size or market share, and
thus would not be able to explain the phenomenon in O’Donnell (2008).

2.3 The Economics of Cybersecurity
The question of how to best secure systems against malicious actors is no longer considered
a purely technical question (Soo Hoo (2000), Anderson (2001), Schneier (2008)) but rather
an economic one about incentives and trade-offs. Basic economic theory suggests that posi-
tive externalities result in suboptimal investment, and the case of cybersecurity is no different.
The final victim of a cyberattack is not necessarily the technology provider whose product
facilitated the attack, but the consumer whose data has been breached. Various papers have
theoretically explored how software firms may or may not be incentivized to invest in secu-
rity along with how users may be incentivized to add in their own security in the context of
direct breaches, ransomware, vulnerability disclosures, and other simple polices (Herley and
Florêncio (2008), Florencio and Herley (2011), Choi et al. (2007), August et al. (2014), August
et al. (2021), Niculescu et al. (2012), Arce (2020), Arce (2020)).

Empirical studies of cybercrime are few and far between; these tend to focus on very
specific cases that limit their possibility for policy analysis. Crosignani et al. (2021) find that
the indirect effects (in terms of stock prices) of the NotPetya attack were driven by customers of
the victim who have few alternative suppliers – meaning upstream concentration may worsen
an attack. They also find that affected firms made persistent adjustments to their supply chain
network after their attack, which I test in the healthcare setting. In a “pre-mortem” analysis
Eisenbach et al. (2021) find that an attack on any one of the five largest financial institutions’
ability to make payments via FedWire would result in a bank-run-style scenario with over 38%
of total market bank assets affected, suggesting concentration and network centrality matter
jointly.

2.4 Cyberattacks Against Healthcare Systems
Hospitals and healthcare providers over the last two decades have incorporated digital tech-
nologies and completely transformed the healthcare experience.

The effect of a data breach in a hospital – once it has actually occurred – is grave (Choi
et al. (2019)). In particular, McGlave et al. (2023) find that ransomware attacks on hospitals
– which can completely debilitate a hospital’s ability to access its digital systems – decrease
hospital volume of patients admitted and increase mortality for patients admitted.

One might expect a mechanical increase in data breaches and cybersecurity incidents after
hospitals digitize, simply because information is exposed to remote attacks. However, many
data breaches are the consequence of human error and can be either physical or digital. As I
show in Section 4.2, many breaches are not actual crimes but simply mistakes due to provider
errors (e.g., lost papers). McLeod and Dolezel (2018) find using simple logit regressions that,
broadly, increased digitization and connectivity are positively correlated with cyber-driven data
breaches. However, they take digitization as given and do not distinguish between types or lev-
els of digitization. Clement (2023) finds breaches are likely to increase around hospital M&A
activity, possibly due to increases in human error as technology systems are synchronized.
Finally, Kwon and Johnson (2015) find a data breach has no immediate impact on patient
choice of hospital, as the healthcare market – like the healthcare technology market – is often
concentrated with little room for patient choice.
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This paper is perhaps most closely related to Kim and Kwon (2019), who study how EHR
adoption affects hospital breaches. They find specifically that implementation of EHRs, par-
ticularly if hospitals aim for the “meaningful use” objectives outlined in the HITECH Act,
increases data breach incidents, particularly accidents. In general, they examine the “extensive
margin” of EHR choice: implementation or not. However, they do not specify the mechanism
through which adoption affects breaches, and, importantly, focus on EHRs as a monolith rather
than the specific products adopted by the hospitals. This dissertation builds and expands their
analysis in multiple ways. Using a theoretical model as a foundation, I examine specific exter-
nalities that result from hospital choice not just of whether or not to use an EHR but also which
EHR product and its security characteristics. With more detailed data on hospital characteris-
tics and technology choices, I can distinguish between types of breaches and isolate the effect
of vendor concentration. To my knowledge, no other study has examined specifically exam-
ined the impact of the competitive market structure of healthcare IT services on data breach
outcomes, nor conclusively discussed policy solutions such as security minimums and antitrust
activity.

3 Theoretical Model
As described in the Introduction, cybersecurity risk is distinguished from other economics
shocks in two ways:

1. Strategy: the choice to perpetuate a cyberattack is not random but a strategic choice
made by a malicious attacker who observes a system and makes choices in order to
maximize an objective.

2. Scale: just like the digital technologies they seek to compromise, cyberattacks benefit
from near-zero costs of replication and communication, meaning a common vulnerability
may be repeatedly exploited by an attacker across targets and over time.

Largely due to scale and network effects (Katz and Shapiro (1985)), many markets for dig-
ital technology seem to have either one or two large firms: Google in Search; Meta (Facebook,
Instagram) and X (Twitter) in Social Media; Microsoft and Apple in desktop operating sys-
tems; iOS and Android in mobile operating systems; Epic and Cerner in Electronic Medical
Records systems; and more. Users find themselves with fewer and fewer true choices about the
technologies they interact with daily. Most such concentration is primarily due to the physical
facts of digital technology and the regulatory landscape: digital technologies experience both
positive network effects (where a key product characteristic is the ability to interact with other
users) and economies of scale (low marginal costs of adding users). At the same time, facing
the exact same bugs and vulnerabilities, cyberattacks can use the same attack on many users
all at once, creating massive destruction with just one investment.

How does such concentration affect cybersecurity outcomes? In this section, I describe
four forces that shape the relationship between market structure and cybersecurity outcomes.
For a more comprehensive elucidation of these forces, please see Marti (2024).

In this setting, the firm makes an investment in security to protect its own assets; its security
investment also benefits users in that they are less likely to lose their own value following a
cyberattack. Users are able to invest their own security. Attackers make threat investments
against both the firm and then, if the firm is breached, against the users of the firm’s product.
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3.1 The “Floodgates Externality”
The firm’s choice of defense is decreasing in its expected losses, but the more the firm in-
vests, the less each user will experience in losses. Because the firm does not internalize the
users’ losses fully, firms will underinvest in security in both competitive and monopoly market
structures. One can imagine that such underinvestment may be lower under competition, a a
competitive firm may stand to lose more under a breach as users can switch products, leading
to knock-on losses in addition to direct losses from the breach that the firm can internalize.

On the other hand, if users do not factor security into their product choices then competitive
firms may also act as conduits for attacks. In that case, both the monopolist and the competitive
firm would have very little incentive to provide security.

3.2 The “Gatekeeper Externality”
The cost structure the firm faces for providing security will determine the security level. If
security costs have zero marginal cost in the number of users, there is no place if the product
is popular, it does not automatically become more or less secure.

Under zero marginal cost for securing additional users, the monopolist can exert a positive
externality on its users that I term the “Gatekeeper Externality”: all users are hidden behind
one potentially very large wall, rather than every user behind their own short wall, and adding
more users costs nothing. Therefore, the monopolist’s choice of security for any one of its
users protects other users for free.

Put simply, if both the competitive firms and the monopolist each seek a level of security,
then to achieve that level the monopolist spends only once while the competitive firms must
each spend the same amount, duplicating costs. In that way, if the model’s assumption of
economies of scale for the firm holds, then there can actually be a positive externality from the
firm to every user. Users may take into account the differences in security when choosing their
products in the pre-model choice setting, allowing for a transfer via price that accounts for the
externality.

On the other hand, if security costs differ by competitive structure in some meaningful
way, the gatekeeper effect need not hold. In particular, if the cost function of the monopolist
does not show economies of scale, one could even see diseconomies of scale depending on the
relationship. The gatekeeper effect therefore only exists with the assumption of a scaling cost
function.

A Weak Gatekeeper Can Worsen Attacks Do we expect a strong gatekeeper effect? In
Geer et al. (2020), large firms are described as likely to be more internally complex, with soft-
ware meant for a variety of use cases naturally likely to contain more vulnerabilities. As the
popularity of the product grows, and it becomes “general purpose,” it may grow labyrinthian,
with new vulnerabilities. In the model, such a growth in complexity can be modeled as
diseconomies of scale in the number of users. Large firms may then find it harder to find
and patch vulnerabilities than small firms.

On the other hand, small firms may face level high costs to implementing security, e.g.
hiring their first security specialist can be expensive. Under competition, small firms would
then simply not be able to provide the same level of security. Bouveret (2018), for example,
finds that small and medium-sized banks are more likely to fold under a cyberattack than larger
firms. In its App Store Monopoly antitrust case, Apple has argued it can provide better security
as the monopolist, acting quite literally as a gatekeeper (Bloomberg (2022)).
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The question is then whether a vendor’s cost of security is concave in the number of users
it serves or convex. In the concave case, which is also the one where the firm has zero marginal
cost for adding users to its secure software and is the case I examine in this section, the gate-
keeper effect is positive: large firms find it easier to secure each of its users. If the cost function
is convex, however, then the gatekeeper effect is negative: large firms find it harder to secure
each of its users.

3.3 The “Magnet Externality”
I also assume the attacker experiences economies of scale when attacking the monopolist:
as they are only seeking to breach the firm, their only variable of concern is the single cost
investment in finding breaches. Once the attacker has developed the exploit for the firm’s
vulnerability, she can deploy it costlessly to every user:

This costless deployment drives what I term the “Magnet Externality”: although the at-
tacker’s costs do not change in the number or value of users, her expected utility increases,
driving higher investments. A new user of the monopolist’s product, then, has a negative ex-
ternality on all other users, by driving up attacker investment.

The externality is akin to the “threat attraction” effect described in Geer et al. (2020),
namely that larger firms are going to attract more threats because of the potential value at the
end of the attack. An attacker’s basic cost-benefit analysis results in her investing in more
threats against larger firms.

In the competitive case, user-to-user externalities are minimal, especially under the ex-
treme where each user hides behind their own firm. The “Magnet Externality” captures the
negative user-to-user externality that occurs exclusively in the monopoly case. The user-level
externality that cannot necessarily be easily corrected through transfers (so the Coase Theorem
does not apply). To maintain the same level of security, a firm that serves more, or larger, users
would need to correspondingly invest more in security.

The effect on overall welfare of an increase in the value of any single user – e.g., a large
hospital digitizes its operations – is ambiguous and will depend on how the expected losses
to all other users and additional defensive and attacker spending outweigh the user’s value
increase from digitization.

Quality Differences Exacerbate the Magnet Effect It may either be that the compet-
itive firm or the monopolist firm provides greater quality, and therefore more potential value
loss by users depending on exactly what we mean here by quality.

In general, competitive firms are thought to provide higher quality than the monopolist, as
long as quality is a dimension that affects consumers’ choices (Tirole (1988)). On the other
hand, digital technologies specifically benefit from positive network effects, where using the
same product as other users leads to greater per-user value for the product. Then, we would
see wider adoption and usage under a monopoly case than a competitive case, as discussed in
Katz and Shapiro (1985).

Here, positive network effects would show up in the “User-Level Negative Externalities”:
users who see greater value in the monopolist case may also increase the value the attacker can
capture. Positive network effects would therefore exacerbate the magnet effect, making the
monopolist case even more lucrative to the attacker than the competitive case.
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3.4 The Sum-of-Efforts Externality under Monopoly
Finally, I examine the role the user’s own choice of investment–on top of what is provided by
the firm–plays in determining outcomes. The user’s security investment function essentially
to counteract the user-specific values, by allowing the user to add in their own security and
decrease the overall impact of the attack. The attacker, when she encounters such user-level
security, will find her attack failed.

We see again that any user-level security helps decrease the investment of the attacker, and
therefore the expense of the firm. Less trivially, though, is what I call the “Sum-of-Efforts
Effect”: under the monopolist, the relevant parameter is not the individual’s security, but rather
the sum total of security (multiplied by the user’s value).

As such, under the monopolist case, users’ investments in security have positive exter-
nalities by decreasing the attacker’s overall value to be captured, and therefore her overall
investment – which translates into lower overall attack probabilities.

In the competitive case, users only rely on the firm to protect them – not each other – and
so there is no change in one user’s probability of being breached if another adds security.2

Security Bundles Amplify the Sum-of-Efforts Effect A monopolist could more eas-
ily mandate that its users implement certain security practices, e.g., multifactor authentica-
tion, while competitive firms may leave users with more choices. For example, Microsoft
announced a rollout of MFA and a redesign of the software to force all users to use MFA
(WSJ). It is certainly possible for the software developer to bundle in other security practices,
so the user need not shop around and implement their security completely alone. In that case,
not only would users see a direct boost to their own breach safety thanks to the new secu-
rity, but they will boost other users’ security posture too by deterring attacks at the firm level.
Therefore, the sum-of-efforts effect can be amplified if the technology provider bundles in
good security practices.

In a competitive environment, however, firms may differ in their ability to bundle in secu-
rity practices. Firms may make different choices based on perceived competitive impact. The
GDPR privacy protections, through a number of mechanisms, were found to decrease website
engagement and traffic (Congiu et al. (2022)). They may also, later on, serve to decrease a
firm’s liability if the user’s security was insufficient, as in the Change attack where lack of
MFA was blamed for the attack – rather than the product design where an administrative user
could shut down a third of U.S. insurance payments. Firms may even compete on the amount
of security they force users to take on: users who dislike having to pay the [time] cost of
using MFA or securing a password could, in a fully competitive and informed environment,
switch vendors to those that have lower security consciously. In competition, then, we could
see a wide variety of user security choices. Users may be more free to make their own pri-
vacy and security choices, but will also not receive any positive externalities from other users’
investments.

2Note that the lack of effect is due to the attacker’s lack of a budget constraint. The attacker simply chooses each
threat separately to maximize expected value. The existence of a budget constraint might create tradeoffs between
types of threats and result in a risk-redistribution effect. I direct the reader to Acemoglu et al. (2016) for a model
specifically highlighting the risk redistribution phenomenon.
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4 Empirical Application
In this section, I describe the data I use to test the magnitude of the four forces described in
Section 3 in the context of data breaches in U.S. hospitals and healthcare providers. I omit
from this version of the paper a discussion of the regulatory landscape in favor of a focus on
the industry and data used in this specific empirical application.

4.1 Data
In this section I describe the datasets I use throughout the rest of this paper to analyze compe-
tition, cybercrime, and hospital digitization activity. A major part of the work of this paper has
been constructing crosswalks between the three datasets, which, subject to Data Use Agree-
ments, I aim to make available to other researchers. I describe how the matching process
shapes the sample I analyze and compare the quality of the datasets when topics overlap.

The study of data breaches in healthcare is facilitated by the extensive data available. Em-
pirical studies of cybercrime typically suffer from at least three issues:

1. Disclosure Bias: Targets are often disincentivized from disclosing the existence of a
data breach, either due to the anticipated reputational impact (Ford et al. (2021)) or for
fear of follow-on or copycat attacks (Choi et al. (2007)). In settings where firms are not
required to disclose, it is unlikely that all firms would disclose; only large, public firms
with shareholder obligations would be expected to disclose attacks. Under the HITECH
Act of 2009, however, any data breach that affects more than 500 individual records must
be disclosed. Although disclosure is still voluntary and audits do not occur, the mandate
certainly goes farther than any other sector did at the time.

2. Assigning Fault: While the target may through its own investigation understand why a
breach took place, they are often not required to disclose such information. By pairing
the data breach information with a verbal description provided by the entity and data on
the technology vendors used by the breached entity, I can look for latent commonalities
between attacks and move towards assigning fault – key for my counterfactual analyses.
The key assumption here is that the causes of attacks are common across hospitals, and
not that each breach is entirely unique and special.

3. Success Bias: targets may only be aware of attacks that have actually taken place; it
is not always possible to know if attempts were made (or are ongoing). The healthcare
data I use in this study will not address the success bias issue. Instead, I will distinguish
between mistakes and crimes to detect when a third-party is involved in the breach versus
when the software may simply be confusing or humans may use it incorrectly.

Empirical studies of cybersecurity are therefore frequently limited by the lack of detailed,
definitive data on the incidence of cyberattacks and victim’s security landscapes. That lack
of data is at least somewhat by design: most victims are companies and institutions, who
worry that “any such information may be used to criticize their security posture or, even worse,
as evidence for a government investigation or class-action lawsuit” (Schneier (2024)). The
challenge of this paper is then to draw inferences on how and why hospitals are experiencing
data breaches when explicit data is not available.

To do so, I combine datasets that each provide difference sides of the equation.
In Section 4.2, I introduce the U.S. Department of Health and Human Services’ admin-

istrative dataset containing information on every cyberattack affecting five hundred or more
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healthcare records that was reported to the HHS under the mandate of the HITECH Act.
The HIMSS and AHA data, introduce in Section 4.3 and 4.5, provide information data on

hospital technologies I use to form the other side of the equation: what was the technology
landscape of the hospital at the time of its breach? Here, thanks to the other incentives of
the HITECH Act, hospitals are able to report on their new technologies that lead them to the
Medicare incentive payments. The data are quite detailed, and will allow us to get closer to
Assigning Fault: what technologies are and aren’t in use in a hospital at the time of its breach?

There continues to be a deep need for comprehensive data on cyberattacks and the security
landscape of all possible victims, so empirical work can be done to evaluate which security
practices are most effective. New policies, such as the Cyber Incident Reporting for Critical
Infrastructure Act of 2022, will hopefully provide promising data sources that can be studied
in the same manner as this paper for a wider set of industries beyond healthcare and possible
victims (CISA).

4.2 U.S. Department of Health and Human Services (HHS)
Comprehensive data on breaches of healthcare information comes from the U.S. Department
of Health and Human Services’ Office of Civil Rights (OCR).

The HITECH Act created one of the first broad cyberattack disclosure laws in the world.
Any covered entity (CE) was required, from 2010 onwards, to report to the OCR whenever
a data breach that affected more than 500 individual records took place. Each incident is
published by the OCR in a publicly searchable and downloadable portal (Breach Portal). Each
report contains the following:

• Name of Covered Entity

• State

• Breach Submission Date

• Number of Individuals Affected

• Covered Entity Type: Healthcare Provider, Health Plan, Healthcare Clearing House, or
Business Associate

• Type of Breach: Hacking/IT Incident, Improper Disposal, Loss, Theft, Unauthorized
Access/Disclosure, Unknown, Other (may be more than one)

• Location of Breach: Desktop Computer, Electronic Medical Record, Email, Laptop,
Network Server, Other Portable Electronic Device, Paper/Films, Other (may be more
than one)

• Web Description: a short description of the breach, available for all but very recent cases

CEs are mandated to report any breach they become aware of; there is nothing to be done
about breaches they remain unaware of. Indeed, the breach submission date can be interpreted
as the breach awareness date. CEs who do not know or attempt to hide a breach will not be in
the dataset. Individuals may file complaints with the OCR if they believe their data has been
compromised, in which case the CE may not be able to hide the breach. Furthermore, attackers
themselves have been known to report cyberattacks publicly or to authorities to bolster extor-
tion attempts (Dark Reading). OCR will then investigate the breach and assign appropriate
fines. Whether the breach was discovered as the result of a complaint or self-reported is not
contained in the publicly available dataset.
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In this paper, I limit the breach sample to the years for which I have data for the entire cal-
endar year, 2010-2022. I also limit my focus to breaches that take place at healthcare providers,
and in later sections limit the sample to only hospitals. Section 4.2 provides detailed descrip-
tives for the HHS data. I limit all analysis to healthcare providers and exclude healthcare plans,
business associates, and clearinghouses.

Figure 1 shows the number of breaches that were reported to HHS from 2010-2022. Con-
sistent with expectations, breaches rose in the later part of the 2010s, saw a spike in 2020 likely
related to the pandemic, and have remained high.

Further, later years show more individuals being affected by data breaches, as seen in
Figure 2. In an alternative presentation, Figure 3 presents a histogram of individuals affected
by each data breach from 2010-2022. The minimum is of course 500 – the minimum number
that requires reporting to HHS – and follows linearly a log scale, meaning there are many
outliers affecting over ten million individual records.

Figure 1: Total Breaches Over Time

4.2.1 Classification: Cyber vs. Physical

I use the description in conjunction with the reported Location of Breach to classify it as a
“cyber” or “physical” breach. Cyber-breaches take place when the data breach did not require
anyone to have physical access to the office or the records. For example, a ransomware attack
that breaches a network server is remote. On the other hand, a physical attack relies in some
way on having access to the specific provider’s office. Note that physical breaches my still
involve technology, such as someone breaking into an office and stealing a laptop on which
ePHI is stored.

I manually label each breach “cyber” or “physical.” When there is no web description
available (about 25% of cases), I label breaches that are located in a“Network Server,” “Elec-
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Figure 2: Total Individuals Affected in Over Time

Figure 3: Individuals Affected in Data Breaches

tronic Health Record,” or “Email” as well as those whose causes are Hacking/IT Incident (see
Section refsec:crime) as cyber and the rest as physical. The procedure is manual, and in the
most recent breaches, no description is available, so the process is subject to Type I or Type
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II errors. However, to my knowledge, no other systematic classification of the breaches exist;
other papers (e.g. Kim and Kwon (2019) rely on the same manual labeling process).

4.2.2 Classification: Crimes vs. Mistakes

I also use the description in conjunction with the listed Type of Breach to classify it as a
“crime” or a “mistake.” A breach is considered a crime if a malicious third party – possibly
including an inside employee – deliberately breached records for the purpose of fraud. A crime
may be local (stolen papers) or remote (a hack). Mistakes are often local (lost keys to a file
cabinet, a fire) but can also be remote (a vulnerability in a technology that was discovered but
not yet exploited).

I manually label each breach as a “crime” or “mistake.” When there is no description
available, I label any breach that includes hacking/IT incidents, thefts, or unauthorized access
in its list of types as a crime and the rest as mistakes.

The goal is to distinguish breaches that may be actively perpetrated by a strategic cyber-
criminal from those that may have been just as possible in the pre-digitization era. Cyber
breaches explicitly rely on digital technology to occur remotely and are possibly scaled, while
physical breaches rely on proximity. Similarly, mistakes are not the result of a strategic at-
tacker, while crimes are. Hospitals may be more or less concerned about each category of
breach, and strategies to mitigate them may differ as a result.

Table 1 shows the breakdown of total breaches by their location and type according to my
classification.

Table 1: Types and Individuals Affected in Reported Data Breaches at Healthcare Providers

Year Count: Individuals Affected:
Total Crimes Mistakes Cyber Physical Mean Min. Max. SD

2010 122 89 33 42 80 6,308.2 500.0 83,945.0 12,139.4
2011 135 104 31 58 77 30,623.2 500.0 1,055,489.0 134,333.5
2012 150 123 27 62 88 8,988.5 500.0 315,000.0 29,799.8
2013 190 133 57 59 131 30,798.1 500.0 4,029,530.0 296,581.7
2014 197 131 66 65 132 42,498.2 500.0 6,121,158.0 437,074.2
2015 195 121 74 36 159 32,795.7 500.0 4,500,000.0 322,918.4
2016 256 163 93 109 147 47,734.0 500.0 3,620,000.0 280,767.1
2017 283 187 96 136 147 16,576.6 500.0 697,800.0 60,943.9
2018 272 173 99 145 127 19,839.1 500.0 566,236.0 65,673.6
2019 392 297 95 271 121 68,048.9 500.0 10,251,784.0 537,114.8
2020 512 419 94 382 129 35,445.7 500.0 1,045,270.0 85,096.7
2021 483 412 71 394 89 66,744.2 500.0 2,413,553.0 227,271.3
2022 479 456 23 450 29 52,049.5 500.0 1,608,549.0 165,819.3

Source: Full Health and Human Services Office of Civil Rights List of Breaches as of August 2023. The data used
in this table cover all breaches across any healthcare provider. The data used in the analysis later removes some
breaches, a process described in Section 4.6

Figures 4, 5, and 6 show the growth in each type of breach over time.
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In Figure 4, we see that while the number of mistakes per year has stayed relatively con-
stant, crimes have been growing drastically over time – suggestive evidence that healthcare
crimes have been – or should be – more of a concern for hospitals.

Similarly, Figure 5 shows that cyber breaches are growing while physical breaches have
again stayed relatively constant. At the start of the sample period, physical breaches outnum-
bered cyber ones; by 2022 that is definitely no longer the case. The “death of distance” suggests
again that there are greater opportunities for breaches available via digital technologies, while
physical breaches may have some natural limit.

Finally, Figure 6 shows the breach type (crime or mistake) in conjunction with the breach
location (remote or local). The category that has grown the most in the sample period is the
set of remote-crimes: cyberattacks, in other words, that exploit digital technologies away from
the site of the breach to use data for the purpose of fraud.

Figure 4: HHS: Number of Crimes vs. Mistakes

4.2.3 Examples of Breaches

Example of a Cyber-Crime “On June 9, 2014, Revere Health, the covered entity (CE),
discovered that cybercriminals had compromised one of its Internet-facing servers containing
electronic protected health information (ePHI), affecting 31,677 patients.”

Example of a Cyber-Mistake “Texas Health Harris Methodist Hospital Stephenville,
the covered entity (CE), reported that a program coding error within its billing system allowed
electronic protected health information (ePHI) to be mismatched with the incorrect account
guarantor. This led to PHI being sent to the wrong recipients.”
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Figure 5: HHS: Number of Cyber vs. Physical Breaches

Figure 6: HHS: Number of Crimes vs. Mistakes and Cyber vs. Physical Breaches

Example of a Physical-Mistake “On November 18, 2017, a physician employee re-
moved patient files from the covered entity (CE), MidMichigan Medical Center-Alpena, and
left them in a public parking lot in an unsecured container, which spilled out into the parking
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lot, and the wind subsequently scattered the records over several blocks.”

Example of a Physical-Crime “A clinical intern at the covered entity (CE), University
of Florida Health Jacksonville (UFHJ) (formerly Shands Jacksonville Medical Center), took
photographs of protected health information (PHI) and emailed the PHI to an unauthorized
third person for the purpose of filing fraudulent tax returns. The PHI included the names,
addresses, social security numbers, dates of birth, and treatment information of 1,025 indi-
viduals. Law enforcement agencies that learned of the breach informed the CE and requested
delays of breach notification.”

4.3 Healthcare Information Management Systems Society (HIMSS)
I use data on hospital characteristics and hospital choices of technology vendors and products
from the Healthcare Information Management Systems Society (HIMSS) Analytics Legacy
Database. The HIMSS data span from 19893 to 2017, and are the result of a survey run by
the organization surveying healthcare providers on their technology categories, applications,
vendor choices, product choices, and more. The data are extremely detailed and paint a full
picture of a healthcare provider’s technology choices. Because the data are the result of a sur-
vey, standard cautions apply with respect to human error, mis- or under-reporting of technology
use, and incomplete data. The data have been used extensively in other studies of healthcare
digitization with success, suggesting the above issues do not preclude careful analysis.

The HIMSS data cover hospitals, systems, ambulatory and sub-acute facilities. In line with
the HHS data, I focus on hospitals, which form their own market and are the most salient
entities seeking to protect patient data and compete for insurance coverage. There are just
under 5,000 hospitals covered by the HIMSS data during the sample period of 2009 to 2017.

The next several figures illustrate the type and the level of detail of data available. In each,
I show the number of hospitals that reported using a digital technology in the relevant category
over time. We have, for each hospital, for each technology category, the specific application
for which a particular vendor is contracted, and in many cases even the product used.

First, Figure 7 shows that more hospitals are reporting using more technologies in more cat-
egories over time – i.e., digitization is increasing, almost tautologically. Note that the increase
is not uniform across categories; some categories, such as Telemedicine or Health Information
Exchange, saw a greater increase than others.4

I focus the majority of this paper on three specific categories: Electronic Medical Record,
Health Information Management, and Security. Figures 8, 9, and 10 show how within each
category, the set of applications now digitized has also increased. Again, the increase has not
been uniform: in 2010, for example, many entities already had a Clinical Data Repository
technology provider, but not all had Computerized Practitioner Order Entry.

Next, the survey also asked healthcare providers to report the specific vendor that providers
use for each technology application. In the below figures, I show the variation in concentration

3The questions asked in the survey have changed significantly over time. I primarily focus on the edition of the
survey from 2005 onwards.

4I relabel the categories in some cases to combine old and new phrasing, or information across different sections of
the HIMSS data. Other papers have usually focused on just the “Application” table of the HIMSS data; I make use of
extra tables such as “Security” and “CDSS” to gain a more complete picture. I check the data to avoid double-counting
and for internal inconsistencies at the hospital level.
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Figure 7: Broad Categories of Technology Reported

Figure 8: Within a Category, Specific Applications: Electronic Medical Record

across providers, within each application.5 There is variation both within years and across

5Less than 1% of hospital-application combinations have more than one vendor reported, even after tables are
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Figure 9: Within a Category, Specific Applications: Health Information Exchange

Figure 10: Within a Category, Specific Applications: Security

combined. If more than one vendor is reported, I lexicographically choose the vendor that either (1) is used again the
next year or (2) has the higher market share.
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years in the dominant vendor, the concentration of the market, and the overall market size
within each application– each of which will be used in the analyses to come.

For example, in the Clinical Data Repository application (the main Electronic Medical
Record application), Meditech dominated in the market in 2009, but by 2017 Epic Systems
has the highest market share.

Figure 11: Vendors within Application: Clinical Data Repository

The data contain even more specific details. Within each vendor, we can see which products
are chosen by specific healthcare providers. For the purposes of this paper, I do not use product-
level information, which is often missing or incomplete.

4.4 Matching Process: HHS and HIMSS
Because the HHS data contain only the name of the breached entity and no other identifiers,
I use a near-manual matching process to find the corresponding entity in the HIMSS data. I
first match on the name and state as accurately as possible. Individual doctors’ offices are
matched to the healthcare entity to which the doctor belongs, if any; standalone providers are
excluded. I exclude dentists, pharmacies, rehabilitation clinics, plastic surgery offices, and any
other breached entities that would not be expected to have a corresponding official healthcare
provider in the HIMSS data.

Out of about 3500 breaches from 2010 to 2017, I match 1,181 to hospitals in the HIMSS
Data. However, I generally limit my analysis to breaches that occurred before 2017, which
covers about 1500 breaches total and misses the (likely) pandemic-induced spike in cyber-
crime. Within the matched breaches only, we still see the same pattern of rising cyber and
rising crime breaches, and no dramatic shifts year-to-year.
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Figure 12: Vendors within Application: Encryption

Figure 13: HHS to HIMSS Data: Fractions Matched and Excluded

4.5 American Hospital Association (AHA)
I also utilize data from the American Hospital Association (AHA) Annual Survey, which began
in 1972 and runs to the present. I specifically use data from the Information Technology (IT)
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Figure 14: HHS to HIMSS Data: Matched Crimes vs. Mistakes, Cyber vs. Physical

supplement, which began in 2008. I use the sample from 2008 to 2018. About 3,500 hospitals
report their IT information to the AHA, which includes data on EMR use, meaningful use
attestation, HIE participation, as well as subjective questions about what might be keeping the
hospital from full adoption of digital technologies and their future plans.

The main AHA survey provides basic hospital information, such as size, the type of hos-
pital (teaching, residency status). The IT supplement includes much more detailed informa-
tion about hospitals’ technology choices, up to and including specific functionalities of their
EHR/EHR systems, the level to which they are involved with their regional Health Informa-
tion Exchanges, and their main concerns and planned changes in their IT strategies. The survey
changes slightly from year to year. The questions are designed both explicitly to address the
Meaningful Use components of the HITECH Act, both explicitly after the Act was passed,
and implicitly as they reflect the major healthcare technology policy concerns at the time of its
passage.

4.5.1 Discussion: No Prices in the Data

The data I described in Section 4.1, the HIMSS and AHA datasets, contain a wealth of in-
formation about hospitals and their technology choices over time. However, to an economist,
they each lack one key piece of information: the price healthcare providers are paying for these
technologies.

The price of an EMR system is often negotiated individually between hospitals and the
EMR vendor, with prices ranging from thousands to millions. The market is therefore sub-
ject to price discrimination (first, second, and third degree), where comparable hospitals pay
different prices for either the same or slightly different products, depending on characteristics
like their location, revenue model, size, and even bargaining ability of their executives. The
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lack of systematically reported prices is both a feature of the market – facilitating individual
bargaining and therefore price discrimination – and a bug of this analysis, which must find
alternative ways to address hospitals’ price concerns.

Of course, we know that hospitals are price sensitive when installing an EMR system: they
explicitly compare expected cost savings (realized over many years) with initial and ongo-
ing costs. Furthermore, costs were listed as the main concern in Figure 15. The HITECH
Act specifically sought to alleviate high prices through subsidies that decreased over time:
addressing high upfront costs and then smoothing the ongoing costs for the hospital.

Figure 15: AHA Data: Why are you not pursuing Meaningful Use?

In the theoretical model, I consider the selection of software (EMR vendor) by the user (the
hospital) to have taken place fully before security outcomes are realized. Using HIMSS data, I
show that hospitals do not switch providers very much throughout the sample and the HITECH
period, suggesting a lock-in effect. In particular, they do not switch after they experience a data
breach, suggesting a lack of sensitivity to security features.

Figure 16 shows that no more than nine percent of hospitals switched EMR vendors in any
given year in the HIMSS data, conditional on having adopted by the year in question (i.e., I do
not count new adoptees as switchers).

4.5.2 How Hospitals Choose Their EMR Vendor

In separate analyses (see Marti (2024)), I investigate how hospitals select their EMR vendors.
In that analysis, I find that nearly all of hospital choice of vendor can be explained by:

1. HITECH Act subsidies on the extensive margin (i.e. when a hospital chooses to contract
with an EMR vendor)
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Figure 16: HIMSS: Percentage of Hospitals Who Switch EMR Vendors Each Year

2. Basic hospital characteristics on the intensive margin (i.e. which among many vendors a
hospital choosesn)

3. The identity of the current market leader on the intensive margin

4. Peer influence and the potential for positive network effects on the intensive margin.

I find that hospitals do not switch vendors often.

4.6 Matching Technologies and AHA Data
I use data on basic hospital characteristics from the American Hospital Association’s annual
survey. I match AHA hospitals to those in HIMSS primarily on the basis of Medicare Number,
and in other cases after manual matching.6

Further, I also only focus on hospitals who report their technologies to the HIMSS Survey.
The survey is voluntary, and hospitals may elect to only respond to part of it. I only include
hospitals that report having at least one Vendor in both the EMR and the Security application
categories. Although this does exclude hospitals that do not adopt either, note that separate
estimates from the AHA data suggest 94% of hospitals had am EHR system by 2018, and the
laggards are likely to be very small practices who do not accept many Medicare patients.

4.7 Who Experiences Data Breaches?
In this Section, I provide descriptive evidence showing that the types of hospitals who expe-
rience data breaches in the sample period differ in some fundamental ways from those that

6The authors of Gabriel et al. (2018) provided me with a crosswalk matching part of the AHA and HIMSS data,
for which I thank them.
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Table 2: Final Count of Hospitals in the HIMSS Technology and AHA Data

All HIMSS All AHA Both

5061 5136 4234

do not. Hospitals that experience data breaches are, in general, larger, more likely to be in
metro areas, more likely to be Children’s hospitals, and more digitized. I break down these
differences into different types of breaches as well.

First, and perhaps most obviously, breached hospitals tend to be larger. One explanation
is mechanical; breaches are only reported when they affect 500 or more records, which means
larger hospitals are more likely to meet that threshold by virtue of having more records. Figure
17 shows the density of bed size split by hospitals that experience no breaches, just one breach,
and multiple breaches.

Figure 17: HHS & AHA: Sizes of Breached Hospitals

The pattern holds as we move to what might be called more complex, or simply more
scalable, attacks: cyberattacks and crime attacks each strike larger hospitals relative to physical
attacks and mistake attacks respectively. Figure 18 shows the size of cyber vs. physically
breached hospitals, and Figure 19 shows the same for crime vs. mistake breached hospitals,
both with never-breached hospitals as a control group. Note some overlap, as a hospital may
have experienced multiple types of breaches.

Across states and territories, the most breached (in terms of fractions of its hospitals
breached) is the District of Columbia – perhaps attackers find records in the nation’s capital
particularly valuable (Figure 20).
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Figure 18: HHS & AHA: Sizes of Breached Hospitals: Cyber vs. Physically Breached

Figure 19: HHS & AHA: Sizes of Breached Hospitals: Crime vs. Mistake Breached

Children’s hospitals are more likely to be breached than other types, perhaps due to the
known greater value of children’s data in secondary markets (Figure 21).

Government and not-for-profit hospitals are also more likely to experience breaches relative
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Figure 20: HHS & AHA: States of Breached Hospitals

Figure 21: HHS & AHA: Service Type of Breached Hospitals

to their peers, suggesting for-profit hospitals’ incentives around data protection may differ from
those of other hospitals not necessarily motivated by shareholder returns (Figure 22).

Hospitals in Metro and Division CBSAs (i.e. urban) were more likely to be breached than
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Figure 22: HHS & AHA: Control Type of Breached Hospitals

those in Micro and Rural areas (Figure 23).

Figure 23: HHS & AHA: Control Type of Breached Hospitals

Figure 24 shows the density of the fraction of inpatient days for the hospital that were for
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Medicare or Medicaid patients – i.e., the exact input the HITECH Act used when determining
incentive payments. I plot the 2009 levels, before the HITECH Act was passed. I find that
hospitals with higher fractions of Medicare & Medicaid inpatient days seem to be less likely
to have had a breach – perhaps incentive payments allowed hospitals to upgrade systems or
meaningful use criterion were implicitly effectively security polices. Alternatively, perhaps
hospitals with low fractions of Medicare/Medicaid patients were more valuable to attackers
thanks to their data on private insurers.

Figure 24: HHS & AHA: Fraction of Medicare & Medicaid

Finally, the only security information in the AHA data asks whether the hospital had MFA
implemented. I use the 2009 level of MFA as a control for general security posture pre-
HITECH Act. Figure 25 shows the breakdown of breached hospitals by whether they had
MFA in 2009. As is a known issue in cybersecurity research, we appear to suffer from reverse
causality here: hospitals that have implemented MFA are actually more likely to be breached
later. The omitted variable is “concern about being breached” – hospitals that believe they
might be breached are more likely to implement security tools like MFA – but also more likely
to actually experience the breach. We will therefore need to be careful with causality of digiti-
zation and breach activity.

The result holds when we focus on cyber breaches only, though with the caveat that few
hospitals are cyber breached in general.

4.7.1 Market Conditions and Data Breaches

This paper is concerned with how market structure shapes cybersecurity outcomes. In this
Section, I provide descriptive evidence that hospitals in more concentrated markets – both in
terms of the concentration of hospitals and of technology vendors – experience more breaches.
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Figure 25: HHS & AHA: Had Multi-Factor Authentication in 2009 vs. Breached

Figure 26: HHS & AHA: Had Multi-Factor Authentication in 2009 vs. Cyber Breached

4.7.2 The Hospital Market: Beds

Under a Magnet Effect, if the object being targeted for vulnerabilities is the hospital, then a
hospital that commands a large market share in its state should expect to see more breaches.
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Figure 27 shows the correlation between the HHI of the hospital sector – where market
share is the share of beds each hospital has in the state and year – and the average number of
breaches experienced by hospitals in that state and year. The market here is the market for
hospital beds, not yet technology. Here, we can clearly see that hospitals in more concentrated
states – i.e. where patients have fewer options, and individual hospitals are larger – experience
on average more breaches than in their less concentrated peers. The result mirrors that of
Hydari et al. (2012) which found patient data was somewhat better protected in competitive
hospital markets. However, we must control for hospital size – a driving factor of the attack in
the first place to a strategic attacker.

Figure 27: HHS & AHA: HHI of Hospitals and Average Breaches

4.7.3 The Technology Market: EMR Vendors, State-Level

On the other hand, if the exploit comes not from the hospital but from the technology the
hospital uses – that is, the relevant market is healthcare technology – we would expect to see a
similar pattern for technology concentration as well.

Figure 29 shows the correlation between the HHI of EMR vendors within a state and year
and the average number of breaches per hospital in that state and year. Here, we are concerned
with concentration at the technology level – the vector through which an attacker can access
a hospital’s records, the upstream conduit, but not the final target. We see the same pattern:
concentrated markets are associated with each individual hospital experiencing on average
more breaches.

In Figure 30, the result holds even when we limit focus to just cyber breaches, again illus-
trative of the role a concentrated technology market can play in facilitating scaled attacks. A
similar pattern holds in Figure 31, focusing on crime breaches only.
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Figure 28: HHS & AHA: HHI of Hospitals and Average Cyber Breaches per Hospital

Figure 29: HHS, HIMSS, & AHA: HHI of EMR Vendors and Average Breaches per Hospital

4.7.4 The Collective Buyers Market: EMR Vendors, GPO-Level

I next look at vendor concentration within the GPO to which a hospital belongs. The GPO
generally defines the actual set of choices a hospital has for its technology vendor contracts,
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Figure 30: HHS, HIMSS, & AHA: HHI of EMR Vendors and Average Cyber Breaches per Hos-
pital

Figure 31: HHS, HIMSS, & AHA: HHI of EMR Vendors and Average Crime Breaches per Hos-
pital
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and therefore may provide a better sense of the market for technology vendors faced by an
individual hospital. The GPO-level HHI here measures how concentrated, within a GPO,
hospitals’ choices of vendors are.

We once again see the same result in Figures 32 and 33: hospitals that are in GPOs with
fewer vendor choices and more concentration are more likely to experience breaches, espe-
cially cyber breaches.

Taken together, the figures in Section 4.7.1 suggest that in environments where hospitals
have fewer choices and are more concentrated in their technology vendors, or environments
where patients have little hospital choice and large hospitals dominate, more breaches occur.

Figure 32: HHS, HIMSS, & AHA: HHI of EMR Vendors within a GPO and Average Breaches per
Hospital

As a test, I check if physical breaches show the same pattern. I find that physical breaches
do not seem to particularly correlate with the HHI of the hospital (Figure 34), suggesting
something about the method of attack may be relevant to the market concentration correlation
observed.

4.8 Methodology: The Duration Model, Time to Breach
In this Section, I empirically investigate how the digitization process has affected cybersecurity
outcomes in the healthcare sector. I do so by breaking down the analysis into two margins:
(i) Extensive Margin (ii) Intensive Margin. Within the Intensive Margin, I conduct tests that
estimate the importance of each of the four externalities described in the model from Section
3:

1. Floodgates Effect: Attacks scale, meaning as long as the technology provider is the
same, the attacker has a near-zero marginal cost of attacking each additional hospital.
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Figure 33: HHS, HIMSS, & AHA: HHI of EMR Vendors within a GPO and Average Cyber
Breaches per Hospital

Figure 34: HHS, HIMSS, & AHA: HHI of EMR Vendors within a GPO and Average Physical
Breaches per Hospital
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Therefore, once a single hospital is breached and the exploit has been developed, all other
hospitals who have the same vulnerability are at increased breach risk. We therefore
would expect to see many hospitals with the technology vulnerability in common all
breached at once.

• Test: once one hospital has experienced a breach, are its peers all more likely to
experience breaches as well?

2. Gatekeeper Effect: As the counter to the floodgates effect, additional investment in se-
curity by the technology vendor would keep all of its users safe. Software developers
may experience economies of scale in security investments, able to keep all their users
safe with one investment, while in a competitive market each developer has to indepen-
dently invest in costly security.

• Test: are larger (i.e. more popular) vendors better able to protect their hospitals
than others? Who invests in security?

3. Magnet Effect: Attackers are strategic, and therefore will choose to invest in developing
an exploit for software that has a higher expected benefit than cost. A technology vendor
that serves many hospitals therefore is an attractive target, assuming there is a low-to-
zero marginal cost of deploying the same attack on multiple targets when the attacker
only has to develop an exploit once. Any hospital that uses the same technology provider
as others creates a negative externality on all other users by increasing the expected value
of the attack.

• Test: Are larger vendors more likely to be associated with breaches than smaller
vendors?

4. Sum-of-Efforts Effect: On the other hand, I find that as long as individual hospitals
are able to add their own security on top of what the technology provider has, each
hospitals’ investment can act as a deterrant to the attacker. That is, individual security
reduces the overall expected value to the attacker of exploiting the technology in the first
place. Therefore, each additional security choice by an individual hospital has a positive
externality on all other users by decreasing the expected value of the attack.

• Test: if hospitals implement security technologies, do they better protect not just
themselves, but their peers as well?

My primary methodology for evaluating the role various technologies play in cyberattacks
is the duration model (Van Den Berg (2001)). Here, we seek to answer the question, “What
influences how long a hospital can go without having a data breach?”

Implicit in that question is the presumption that hospitals will inevitably experience a data
breach; their inherent characteristics, their technology choices, and other covariates I explore in
this paper all will influence the when of the data breach. Good choices and characteristics make
data breaches more “rare” and therefore hospitals can go longer without them; bad choices and
characteristics make them more common and possible earlier.

Let th be the amount of time from the start of the world that passes before hospital h
experiences any data breach. I assume the “start of the world” is 2010, the first year the
HITECH Act mandated data breach disclosure. Of course, hospitals may have experienced
breaches before 2010, and indeed that may affect their probabilities of future breaches. I use
both a multiple-breaches model to account for hospitals experiencing more than one breach
during the sample period, and I also assume that the state of a hospital in 2010 captures any
differences between hospitals that were and weren’t breached before then.
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The data are right-censored, meaning there exist hospitals in the sample that do not expe-
rience any data breaches, though they may in the future. The data exist as a “flow,” meaning
we observe hospitals over time, and can identify the years in which they experienced data
breaches (rather than looking at just the breached hospitals in their year of breach, or a single
cross-subsectional year).

We are interested in the distribution of the time-to-breach, th across hospitals. Let F ptq “
PrpT ă tq, the probability the hospital “survives” without a breached only until some t.
Conversely, Sptq “ 1´F ptq is the probability the hospital is breached within t. Then, hptq “
fptq
Sptq is the hazard ratio, the probability the hospital is breached exactly at time t, conditional
on having survived until t. It must depend both on the external conditions at time t and on
the characteristics of the hospital that let it survive this long without a breach (Van Den Berg
(2001)). It is the latter fact – that hospitals that do not experience breaches are somehow
different from those that do – that makes the hazard ratio useful here.

4.8.1 Cyber vs. Physical Breaches

One would expect a priori that after records are digitized, there would be more cyberattacks
and fewer physical attacks. On the other hand, physical attacks may simply hold steady while
cyberattacks increase, leading to an overall increase in breaches. I break down the extensive
margin analysis into total, cyber, and physical breaches to determine if digitization itself is
correlated with more cyberattacks, or if other factors simply mean more breaches in general.

4.8.2 Mistake Data Breaches

Let us assume that the first category of possible data breaches are mistakes. Hospitals can
be prone to or mitigate the occurrence of mistakes (e.g. papers that scatter in a parking lot,
Section 4.2.3). However, they do not necessarily depend on the occurrence of mistakes at
other hospitals.

Suppose each hospital has its own individual rate of mistakes, θhptq. For exposition pur-
poses but not in the final analysis, let’s also assume that the rate of mistakes does not change
over time for a hospital, θhptq “ θh. Then, the probability that a mistake has occurred by time
t is F ptq “ 1 ´ expp´θq, which results in a hazard rate of exactly θh. Therefore, the object
we are interested in is itself the hospital-specific hazard rate.

In the analysis, θhptq will depend parametrically on hospital characteristics and choices,
like its size (constant over time) and its choice of technology systems (time-varying). In par-
ticular, I will assume those covariates enter the hazard function proportionally, leading us to a
Cox Proportional Hazards model (Cox (1972)):

θhptq “ λptq exppxh,tβh,tq

meaning the baseline hazard rate λptq is common across hospitals, but the actual in practice
rate for a hospital will depend on factors xh,t that vary jointly across hospitals and time. It is
the coefficients on these covariates, βh,t, that I aim to estimate.

I will assume λptq “ 1, meaning it is constant over time, neither generally increasing or
decreasing; including a constant in the list of covariates xh,t will capture the shifts over time
or across hospitals.
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4.8.3 Crime Data Breaches

In this section, I provide a simple structure to ground the concepts driving the results of the
duration model.

Let us suppose there exists an attacker who makes a hospital- and time-specific investment
in attacking an institution at some particular time αht. The investment may depend on the
technology choice of the hospital (e.g. if the attacker has been able to breach that technol-
ogy before) and the overall stock of attackers (high during the pandemic, for example), and
other factors that vary both by hospital and time. Similarly, a hospital makes an investment
in securing itself from crimes, sht. Let’s assume they interact in a Tullock-style contest, i.e.
independently and simultaneously, so that the overall probability of attack becomes:

Pr
ht
pSuccessful Attackq “

αht

αht ` sht

The hazard rate, as described in Section 4.8.2, turns into exactly the probability of experiencing
a successful attack.

However, the key difference is that while sht captures the [effective] security investment
of the hospital – consisting of their technology choices as well as invariant characteristics such
as size and type that will affect the efficacy of such choices – we also have the component
αht, which is a separate object not under the hospital’s control. Furthermore, the attacker’s
effective investment αht depends on the investments of every other hospital in the system.
Therefore, as every other hospital in the system gets more secure, the attacker will (a) shift
investment towards hospitals that have less security and (b) increase overall investment if they
are not budget constrained (c) target technologies that have the highest promised returns, i.e.
those used by the largest-weakest hospitals.

Overall, there is an implicit dependence in αht of the hospital’s attack threat level on every
other hospital in the system that was not present in the case of mistakes. We therefore expect
that the differentiating factor between a hospital that experiences a crime data breach and a
mistake data breach should be precisely the possibility of network effects brought upon by the
strategic and scaling attacker that do not appear in the mistake breaches.

In the case of EHRs, for example, we expect that the probability of experiencing a crime
and cyber-based data breach may depend on not just one’s own digitization but also the dig-
itization of one’s peers: as more hospitals begin to use EHR systems, the overall gain to an
attacker of learning how to breach an EHR system increases, leading to increases in αht as
described above.

4.8.4 Identification

The identification assumption here is that there is no reverse causality, directly or indirectly,
in the breach outcome on digitization behavior of the hospitals. That is, unobserved factors
are not influencing both the digitization behavior and data breaches. The assumption is strong.
Other papers instrument digitization behavior with variables that are supposed to be unrelated
to data breaches, such as average digitization in the state (Kim and Kwon (2019)). However,
my exact argument in Section 4.8.3 is that the occurrence of breaches at other hospitals may
in fact be directly related to breaches at one’s own hospital, as a strategic attacker can take
advantage of common technologies to run a scaled attack.

I instead rely on the evidence of [redcated] which showed that hospitals’ choice to adopt
EHR systems is primarily driven by the perceived costs and benefits rather than security con-
cerns. These costs and benefits change over time thanks to the HITECH subsidies (Dranove
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et al. (2014b), Adler-Milstein and Jha (2017)), might vary by location (Dranove et al. (2014a)),
or basic hospital characteristics (Adler-Milstein et al. (2015)). Further, as I show in separate
analyses hospitals do not seem to respond in measurable ways to the experience of a breach
(either their own or in their state), suggesting some role of insurance and/or inevitability (Marti
(2024)).

I also control for other factors that may influence the tech-savvy of a hospital (and there-
fore their data breach outcomes) while being orthogonal to the EHR and security decisions.
Following Kim and Kwon (2019) I include the use of technologies unrelated to the storage of
records as control variables. I use the following:

1. Health Information Exchange (HIE) Per Choi et al. (2023), joining an HIE is possibly
related to data breach risk. By 2017 about 68% of sample hospitals report being in a
HIE.

2. Electronic Data Interchange Clearing House (EDI) In 2024, the massive Change
Healthcare ransomware attack brought down the major clearinghouse that serves, as of
this writing, about a third of the healthcare market and therefore about five percent of
U.S. GDP. EDIs were common targets for ransomware attacks even before the Change
attack. I include whether or not the hospital uses an EDI. In 2017 83% of sample hospi-
tals contract with an EDI.

3. Radiology Information Systems (RIS) similar to the Cardiology Information system
also used in bluecitekimkwon, a type of information system not directly governed by
HITECH initiatives and therefore another indicator of how an implementing hospital
may recognize a higher benefit to healthcare IT implementation. I use the Radiology
Information System instead of the Cardiology because of a quirk in the data: there are
two places where hospitals are asked about their RIS (in Applications and under Service
Delivery), so we are likely to get responses from more hospitals.7 By 2017, 89% of
hospitals in the final sample have a radiology information system.

4.9 Results: Extensive Margin
In this Section, I present results on the extensive margin for how adopting a Basic EMR, and
then an Advanced EMR, along with other security technologies, impacts a hospital’s breach
risk. The coefficient on each acts multiplicatively on the overall hazard rate of experiencing
a breach in the Cox Proportional Hazards model. Therefore, coefficients greater than one
increase risk, while coefficients lower than one will decrease it.

As would be expected if digitization enables attackers to access records, adopting Basic
EMR in point estimate is associated with a small increase in the breach hazard rate, while
advanced is even lower (Table 3). Spam filters help somewhat, while single sign-on software
might actually facilitate attacks. Coefficients on Firewalls and Encryption are not statistically
significant, especially when we add in EMR technologies and basic hospital characteristics (all
the ones discussed in Section 4.2.2). I present the size coefficients for exposition and to pin
down orders of magnitude: the largest hospitals have three times the hazard rate of the smallest
hospitals in the sample.

7Hospitals may report their Vendors in both surveys, or they may – due to error – report in only one.
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Table 3: Hazard Ratios, Breach: Extensive Margin

Breach Breach

Basic EMR 1.235 (0.577)
Advanced EMR 1.016 (0.918)
Firewall 1.027 (0.893) 1.023 (0.909)
Spam/Spyware Filter 0.708* (0.092) 0.708* (0.091)
Encryption 1.243 (0.202) 1.239 (0.210)
Single Sign-On 1.218 (0.107) 1.215 (0.111)
HIE 0.894 (0.361) 0.891 (0.350)
EDI 1.082 (0.689) 1.076 (0.710)
RIS 1.012 (0.977) 0.926 (0.864)
Medium 1.177 (0.485) 1.171 (0.498)
Large 3.015*** (0.000) 2.995*** (0.000)
Has MFA in 2009 1.057 (0.635) 1.054 (0.652)

Pseudo-R-Squared 0.06 0.06
Hospital Count 4232 4232
Breach Type Count 381 381

Results gain meaning when we consider not just all breaches as a monolith but break them
down into the type of breach (Table 4). Here, most notably, implementing a Basic EMR is
associated with a six times higher cyber breach hazard rate, while the physical breach rate is
actually much lower. The results confirm the hypothesis that digitization did not just change
hospital procedures: it gave attackers new avenues through which they could access records
and conduct breaches. A lack of paper records might then lead to, in some compensation,
fewer physical breaches. The pattern does not necessarily hold for crimes and mistakes (Table
5), as no coefficients are statistically significant. The failure to rule out differences between
crimes and mistakes suggests the extensive margin does not exactly impact third-party breaches
differently from internal ones.

41



Table 4: Hazard Ratios, Each Breach Type: Extensive Margin

Breach Cyber Physical

Basic EMR 1.235 (0.577) 6.770* (0.087) 0.803 (0.575)
Advanced EMR 1.016 (0.918) 1.123 (0.622) 1.007 (0.971)
Firewall 1.023 (0.909) 1.558 (0.140) 0.859 (0.506)
Spam/Spyware Filter 0.708* (0.091) 0.541** (0.031) 0.766 (0.260)
Encryption 1.239 (0.210) 1.229 (0.426) 1.295 (0.204)
Single Sign-On 1.215 (0.111) 1.179 (0.427) 1.230 (0.158)
HIE 0.891 (0.350) 1.044 (0.846) 0.904 (0.494)
EDI 1.076 (0.710) 0.993 (0.981) 1.186 (0.481)
RIS 0.926 (0.864) 0.364* (0.060) 1.870 (0.339)
Medium 1.171 (0.498) 1.351 (0.471) 1.127 (0.667)
Large 2.995*** (0.000) 3.639*** (0.001) 2.903*** (0.000)
Has MFA in 2009 1.054 (0.652) 1.061 (0.737) 1.046 (0.758)

Pseudo-R-Squared 0.06 0.10 0.06
Hospital Count 4232 4232 4232
Breach Type Count 381 138 255

Table 5: Hazard Ratios, Each Breach Type: Extensive Margin

Breach Crime Mistake

Basic EMR 1.235 (0.577) 1.713 (0.249) 0.707 (0.480)
Advanced EMR 1.016 (0.918) 1.088 (0.645) 1.004 (0.987)
Firewall 1.023 (0.909) 1.012 (0.962) 1.076 (0.798)
Spam/Spyware Filter 0.708* (0.091) 0.602* (0.063) 0.870 (0.588)
Encryption 1.239 (0.210) 1.560** (0.042) 0.840 (0.474)
Single Sign-On 1.215 (0.111) 1.154 (0.355) 1.345 (0.111)
HIE 0.891 (0.350) 0.809 (0.172) 1.211 (0.364)
EDI 1.076 (0.710) 1.200 (0.464) 0.943 (0.839)
RIS 0.926 (0.864) 0.620 (0.301) 1.590 (0.559)
Medium 1.171 (0.498) 1.226 (0.503) 1.167 (0.658)
Large 2.995*** (0.000) 3.669*** (0.000) 2.547*** (0.002)
Has MFA in 2009 1.054 (0.652) 0.992 (0.955) 1.140 (0.476)

Pseudo-R-Squared 0.06 0.08 0.06
Hospital Count 4232 4232 4232
Breach Type Count 381 239 155
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4.10 Results: The Market Effects
Next, I look at how the choice of technology vendors and the resulting market structure affect
cybersecurity outcomes, testing the hypotheses of the theoretical model.

I seek to understand if certain technologies and market structures are actually hastening
breaches for U.S. hospitals.

Of course, the question of measuring the security of a software is extremely difficult, since
we do not know which attacks were attempted and thwarted by good software; we only observe
attacks in the HHS data that were actually successful. Furthermore, the HHS data do not
specifically assign fault to a particular technology in their public reports – as described in
Section 4.2.2. In the terminology of Section 3, we are not able to observe βi directly, the
security posture of the technology service provider. If we could, we would directly be able to
compare numbers and externalities.

Instead, I combine various datasets that each offer us one piece of the puzzle and use
econometric analysis to draw revelations about the security posture of technology vendors.
The HHS data show us when breaches occur in hospitals. The AHA data provide basic hospital
characteristics. The HIMSS data provide the technology and security posture of the hospital
over time. We do not, as is almost always the case, have specific data on the vulnerabilities
in technology nor whether the hospital was exposed to a vulnerability (see Murciano-Goroff
et al. (2024) for a rare case with specific vulnerability data, but at the cost of not having any
associated breach data).

In this Section, I take a backwards-induction-style approach, looking at breach outcomes
to infer something about breach sources. That is, we can use information about how an attack
spreads to infer whether an exploitable technology might have been involved. If the attack is a
mistake, or takes place physically, it occurs outside the technology choices of the hospital. For
cyber-crimes, however, looking at the technologies used in the same locations where an attack
occurred gives us information about the security of those technologies. If a lot of bikes using
the same bike lock are stolen, one might consider investigating the safety of that lock.

On the other hand, one might expect hospitals themselves may be making choices about
which EMR vendor to contract with as a function of their own concern about security, along
with follow-on choices about which additional security technologies to implement. However,
as I showed in Section 3, it appears hospitals are choosing their EMR vendor based on fac-
tors near-exogenous to their individual security concerns, such as who offers a certified EHR
system, the HITECH subsidy levels, the dominant contracts in their Group Purchasing Orga-
nizations, their state leaders, the possibility of positive network effects at the state level, and
simple stickiness to their past vendor. In addition, Marti (2024) shows that hospitals do not
necessarily increase their switching behavior for their EMR vendor – or any other vendor –
after experiencing a breach. I therefore in this Section treat the specific choice of EMR vendor
as near-exogenous to the product’s advertised security.

I run a Cox Proportional Hazards Model, as in Section 4.8, including as explanatory vari-
ables the specific choice of EMR Vendor used by the hospital over time. Note that hospitals
may change their EMR vendors over time, though not often, so the variable is time-varying.
The choice of EMR vendor therefore acts multiplicatively on the hazard rate of a breach in any
given year. As a “binary” choice – whether to use each EMR vendor is a binary choice, with
the restriction that they can only use one – the effect is allowed to vary with time.

I bottom-code vendor choice to be “Other” for any vendor that is not, in any year of the
sample, in the Top 10 of Vendors chosen that year. The “Other” then is really any “small”
vendor. All hazard ratios are presented with the baseline of “Other,” i.e. how much more
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or less hazardous it is to use e.g. Allscripts relative to any of the very small vendors. I first
separate the vendors into three types: Any Large Vendor, Small Vendors, and Self-Developed.
Then, I separate out each of the Top 10 vendors to analyze how secure each is.

4.10.1 Aside: The Reflection Problem

Before I present results, it is prudent to discuss the common “reflection problem” of social
effect analysis, well described in an early analysis by Manski (1993). The paper breaks down
social effects into three types, each of which is econometrically indistinguishable from the
others without additional data or theoretical structure.

The issue is this: when a hospital is part of a network (e.g. a group of hospitals that all
use the same EMR vendor), and the network shares outcomes, what we observe to be the
result – a hospital experiencing a breach at the same time as all its peers – could be due to
endogenous, exogenous, or correlated effects. Manski (1993) uses slightly different, more
general definitions; I adapt them here for the case of hospital breaches:

1. Endogenous Effect: other hospitals in the network experience a breach, and therefore the
hospital in question experiences one too

2. Exogenous Effect: some outside factor results in all hospitals in the network experienc-
ing a breach

3. Correlated Effect: some factor that every hospital in the network has in common led to
the breach

Manski (1993) shows that without additional structure, a classical econometric scheme
will not distinguish the three effects. How can we distinguish the three effects? And more
fundamentally, should we?

When discussing the role of strategy and scale in cyberattacks, I specifically defined crimes
as third-party-perpetrated attacks and mistakes as internal; cyber as scalable and remote, while
physical attacks are non-scalable and in-person.

First, a scaled attack can appear and indeed encapsulates all three types of effects. To
see a scaled attack, one needs only to observe that there is any social effect at all. If attacks
are not scaled, and networks do not matter outside of the characteristics that determine them,
then we should not observe any social effect. For example, if attacks do not scale through
technology choice, but rather because the vendor itself is flawed (a correlated effect), then
simply controlling for the choice of vendor as we did in Section 4.10 would provide more
information than the additional peer effects I test later in this Section. On the other hand, if
there are social effects of any kind, we will be able to learn something from adding in specific
group outcome information. Further, we can attribute these choices in common to cyber and
physical attacks separately: is the correlation through some kind of technology, as is required
for a cyberattack? Or is it something about hospital characteristics driving the technology
choice, which might be expected to show up in physical breaches too?

Second, a strategic attack is one conducted by a third party against many hospitals at once
– a crime – facilitated by the network they share in common. The crime therefore encapsulates
the exogenous effect if we think crimes are contemporary (i.e. occur all at once) or endogenous
if we think crimes occur dynamically (the criminal tests the attack on one hospital first). Due to
data limitations, I am not able to test the dynamics of cyberattacks any faster than on an annual
basis. However, I think of the distinction between endogenous and exogenous as somewhat
moot in the context of a scaled attack: the key is whether the attack was perpetrated by a third-
party or not, and whether the third-party spurs any kind of social effect at all. Therefore, I
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instead add structure to the analysis by comparing crimes and mistakes, specifically to detect
if the presence of a third party in the breach induces the exogenous social effect that we would
not expect to see in mistakes.

Throughout all analyses, I control for hospital characteristics and ultimate vendor choice,
which I show in Section 3 can explain most hospitals’ eventual technology choices. Further,
as hospitals tend to be reactive rather than proactive in their security posture, and their vendor
choices are made without first-order concern for security, I further treat network structure as
orthogonal to security outside the explicit effect of the technology and the set of peers.

4.10.2 Going After the Largest Vendors: The Magnet Effect

I begin the analysis with the “Magnet Effect”: the finding that technology products that serve
either more users or larger users could induce attackers to develop exploits and conduct scaled
attacks. The Magnet Effect is a user-to-user negative externality that cannot be corrected, since
there is no reasonable way for a large user to reimburse a small user for the increase in risk.

I therefore begin the analysis by looking at whether a hospital served by a popular provider
– independent of the identity of that provider – faces in and of itself an increase in breach risk.
Here, I add into the specification from Section 4.9 one additional explanatory variable:8

Group Sizeg,t “ 100ˆ
Number of Hospitals in Group g at t

Total Number of Hospitals at t

I then run the specification with a number of “groups” as described: states, Health Informa-
tion Exchange (HIE), and EMR networks. In each case, I treat the network choice as exogenous
to the breach risk. I include the covariates from Section 4.10, including a fixed effect for each
group, a control for Basic vs. Advanced EMR, the presence of security technologies, and basic
hospital characteristics.

To test which peer groups matter when it comes to the network effect of a cyberattack, I
test each specification below with a different possibly relevant network:

1. States: are attacks spreading at the local level? For example, an attacker in Maine may
seek to exfiltrate many records from Maine patients.

2. HIE: does a Health Information Exchange, where hospitals share records, get compro-
mised all at once?

3. EMR: does the implicit technology network of having the same software provider –
which may also be the same as the de facto HIE due to interoperability – facilitate the
spreading of attacks? The EMR network is the one I hypothesize results in the software
monoculture and market concentration effects on cybersecurity outcomes posited at the
start of this paper.

4. Three security technologies: Firewall, Encryption, and Spam/Spyware Filters.9

8I also remove the control for “Basic EMR” as near all hospitals that have an EMR at all have a Basic EMR,
distorting coefficients through a small sample size.

9While I did not show results for specific vendors here, I examine if there might be a network effect of using
the same, e.g. spam filter as everyone else. The story is natural: a phishing email sent en masse would be treated
equally by a spam filter regardless of the hospital, so if it slips through one it could slip through all. However, here
we do suffer from small sample sizes and a time endogeneity of hospitals who experience past breaches implementing
security technologies only reactively rather than proactively.
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I also test whether or not the networks hold for each type of attack: cyber vs. physical, and
crime vs. mistake. The general idea, as discussed in Section 4.8.3 is that crime breaches,
perpetrated by a third party who seeks to scale attacks, may show network effects. Physical
breaches, on the other hand, would only show network effects if the network relies somehow
on physical distance. Mistake breaches

I finally repeat the analysis on contemporary networks (i.e. outcomes your peer hospitals in
the same year, excluding yourself) and on lagged networks (i.e. outcomes your peer hospitals
faced last year, excluding yourself). I find no qualitative differences between the results.

I show the results for each group in Tables 6, 7, and 8. Then, I look at security technologies
specifically: Firewall (Table 10), Encryption (Table 11), and Spam/Spyware Filters (Table 12).
I will guide the reader through each set of results carefully so we can be sure exactly what is
and is not being tested in each case.

Table 6: Hazard Ratios: State Magnet Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 1.068* 1.109 1.106** 1.030 1.003
(0.066) (0.105) (0.016) (0.485) (0.963)

Advanced EMR 1.110 1.389 1.231 1.054 1.046
(0.502) (0.177) (0.277) (0.783) (0.859)

Firewall 1.014 1.640 0.979 0.818 1.094
(0.944) (0.109) (0.933) (0.376) (0.757)

Spam/Spyware Filter 0.709* 0.541** 0.610* 0.765 0.851
(0.095) (0.032) (0.072) (0.254) (0.527)

Encryption 1.240 1.208 1.576** 1.318 0.844
(0.215) (0.490) (0.043) (0.184) (0.499)

Single Sign-On 1.234* 1.208 1.156 1.250 1.383*
(0.078) (0.342) (0.339) (0.121) (0.071)

HIE 0.950 1.091 0.859 0.979 1.285
(0.672) (0.693) (0.323) (0.887) (0.221)

EDI 1.041 1.007 1.166 1.135 0.915
(0.837) (0.983) (0.537) (0.605) (0.761)

RIS 1.030 0.591 0.793 1.745 1.352
(0.941) (0.317) (0.587) (0.362) (0.685)

Medium 1.339 1.660 1.451 1.247 1.282
(0.204) (0.244) (0.225) (0.414) (0.464)

Large 3.636*** 4.896*** 4.715*** 3.363*** 2.894***
(0.000) (0.000) (0.000) (0.000) (0.001)

Pseudo-R-Squared 0.05 0.07 0.06 0.04 0.04
Hospital Count 4232 4232 4232 4232 4232
Breach Type Count 381 138 239 255 155

Let us use Table 6 as a guide for the rest of this Section. Here, I am testing how the size
of the peer group to which the hospital belongs – as a share of all hospitals, so size is really
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relative here – affects the hospital’s breach risk. Does being in a larger state, in this case (where
again, “larger” means “more hospitals,” not population per-se), worsen breach risk?

Here, I find yes – for the cases of cyber and crime breaches in particular, breach risk is
increasing. A one-percentage point increase in the size of the group (the share of hospitals
located in that state) increases cyber- and crime-breach risk by about 10%. Both physical and
mistake breach risk increase on point estimate, but the estimates are small and not statistically
significant.

The magnet effect distinguishes a strategic attack from a general shock – only a strategic
attacker would consciously seek to attack a large group in hopes of capturing as much value as
possible at once. Here, it seems hospitals in larger states experience higher breach risk. One
explanation is that being in a larger state may be associated with more attacks on hospitals
in general, as is the case in California, New York, and other states with major metropolitan
areas and many hospitals where an attack may carry prestige for the attacker. That effect
only translates minimally to physical breaches, and mistakes even less so. The attacker may
therefore be induced to attack the group not necessarily due to attack scalability but rather
because they expect some positive effect of capturing many state records at once.
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Table 7: Hazard Ratios: HIE Magnet Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 0.996 1.000 0.994 0.998 1.001
(0.464) (0.993) (0.397) (0.691) (0.914)

Advanced EMR 0.962 0.605 0.928 1.096 1.221
(0.911) (0.308) (0.870) (0.837) (0.725)

Firewall 0.958 1.118 1.308 0.945 0.646
(0.890) (0.812) (0.545) (0.867) (0.175)

Spam/Spyware Filter 0.801 1.225 0.587 0.703 1.159
(0.581) (0.695) (0.354) (0.372) (0.687)

Encryption 1.372 1.032 1.585 1.460 1.069
(0.329) (0.945) (0.239) (0.302) (0.889)

Single Sign-On 1.165 1.015 1.072 1.228 1.309
(0.403) (0.961) (0.782) (0.357) (0.306)

HIE 1.000 1.000 1.000 1.000 1.000
(.) (.) (.) (.) (.)

EDI 1.965 2.742 2.256 1.866 1.762
(0.183) (0.315) (0.272) (0.299) (0.428)

RIS 9.56e+14 2.55e+14 7.00e+14 5.16e+14 1.24e+15
(.) (.) (.) (.) (.)

Medium 1.143 2.134 1.050 1.032 1.228
(0.704) (0.333) (0.930) (0.939) (0.652)

Large 3.343*** 8.479*** 4.244*** 2.509*** 2.823***
(0.000) (0.001) (0.001) (0.007) (0.008)

Pseudo-R-Squared 0.05 0.09 0.08 0.04 0.04
Hospital Count 2948 2948 2948 2948 2948
Breach Type Count 176 67 97 115 84

I see no statistically significant impacts of the size of a hospital’s health information ex-
change on a hospital’s breach risk. Of note is that hospitals are generally not members of
HIEs until later in the same, with higher participation from 2012 onwards as the HITECH Act
created exchanges. The sample is also much smaller, with less than 3000 hospitals in HIEs
(compared to 4200 in the full sample). Earlier results found joining an HIE had no effect on
breach risk (Table 3). Choi et al. (2023) found the act of joining an HIE increases short-term
breach risk, but do not control for the actual technologies adopted to join the HIE (i.e. the
EMR), while I do. The increase in risk from a joining HIE may come from the accompanying
technology adoption rather than the HIE itself.
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Table 8: Hazard Ratios: EMR Vendor Magnet Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 0.972** 0.983 0.972 0.975 0.991
(0.034) (0.434) (0.114) (0.125) (0.644)

Advanced EMR 0.973 1.101 1.070 0.946 0.978
(0.869) (0.705) (0.734) (0.787) (0.935)

Firewall 1.021 1.643 0.977 0.799 1.049
(0.923) (0.129) (0.929) (0.369) (0.879)

Spam/Spyware Filter 0.840 0.634 0.704 0.914 1.023
(0.467) (0.134) (0.250) (0.750) (0.938)

Encryption 1.033 1.020 1.374 1.110 0.695
(0.852) (0.938) (0.142) (0.648) (0.148)

Single Sign-On 1.157 1.168 1.125 1.154 1.214
(0.238) (0.449) (0.449) (0.342) (0.306)

HIE 0.869 0.938 0.819 0.870 1.049
(0.315) (0.793) (0.261) (0.411) (0.833)

EDI 0.955 0.865 1.005 1.085 0.892
(0.819) (0.631) (0.983) (0.754) (0.720)

RIS 0.728 0.454 0.608 1.178 0.920
(0.389) (0.111) (0.203) (0.772) (0.902)

Medium 1.391 1.996 1.484 1.218 1.325
(0.193) (0.147) (0.229) (0.502) (0.463)

Large 3.501*** 6.330*** 4.702*** 2.809*** 2.606***
(0.000) (0.000) (0.000) (0.000) (0.008)

Pseudo-R-Squared 0.05 0.08 0.07 0.05 0.06
Hospital Count 4227 4227 4227 4227 4227
Breach Type Count 345 133 220 224 137

For the EMR vendor, I find that joining a larger EMR vendor – again, iindependent for the
identity of that EMR vendor – is actually associated with a small decline in a hospital’s breach
risk. When more hospitals group together under a single provider, then, may be associated
with an increase in safety simply because one can now access services that smaller hospitals
may find difficult to provide. Alternatively, vendors may switch security strategies as they
grow, which I cannot control for as I do not have information on product characteristics, only
identity.

I repeat the analysis looking at the size of the network in terms of the number of beds
served, which helps us distinguish between vendors that serve a few large hospitals from those
that just serve many smaller hospitals. Again, I do not see any magnet effect (i.e., no coefficient
on Group Size greater than one).
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Table 9: Hazard Ratios: EMR Vendor Magnet Effect

Breach Cyber Crime Physical Mistake

Group Size (Beds Share) 0.974** 0.987 0.977 0.973* 0.985
(0.021) (0.477) (0.125) (0.069) (0.373)

Advanced EMR 0.969 1.106 1.072 0.937 0.961
(0.846) (0.694) (0.728) (0.752) (0.882)

Firewall 1.023 1.646 0.978 0.801 1.050
(0.916) (0.128) (0.934) (0.373) (0.877)

Spam/Spyware Filter 0.839 0.632 0.703 0.913 1.026
(0.464) (0.132) (0.247) (0.748) (0.931)

Encryption 1.034 1.021 1.375 1.111 0.694
(0.849) (0.935) (0.141) (0.646) (0.147)

Single Sign-On 1.157 1.167 1.124 1.156 1.215
(0.237) (0.452) (0.451) (0.336) (0.303)

HIE 0.874 0.933 0.818 0.881 1.064
(0.333) (0.777) (0.256) (0.453) (0.782)

EDI 0.954 0.864 1.003 1.084 0.892
(0.812) (0.629) (0.989) (0.758) (0.719)

RIS 0.735 0.453 0.610 1.193 0.930
(0.402) (0.110) (0.206) (0.754) (0.914)

Medium 1.391 1.997 1.484 1.217 1.323
(0.194) (0.147) (0.229) (0.505) (0.466)

Large 3.496*** 6.329*** 4.698*** 2.803*** 2.600***
(0.000) (0.000) (0.000) (0.000) (0.008)

Pseudo-R-Squared 0.05 0.08 0.07 0.05 0.06
Hospital Count 4227 4227 4227 4227 4227
Breach Type Count 345 133 220 224 137

Finally, Tables 10, 11, and 12 each show the role of using a more popular security tech-
nology. The same sizes are small, as not all hospitals have implemented security technologies
by the end of the sample. I nonetheless find a small role for using the larger Spam Filters on
cyber breaches specifically.

50



Table 10: Hazard Ratios: Firewall Magnet Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 1.002 1.002 1.004 1.002 0.998
(0.401) (0.596) (0.211) (0.470) (0.692)

Advanced EMR 0.954 1.414 0.956 0.800 0.975
(0.808) (0.324) (0.851) (0.310) (0.934)

Firewall 1.000 1.000 1.000 1.000 1.000
(.) (.) (.) (.) (.)

Spam/Spyware Filter 0.825 0.669 0.645 0.894 1.176
(0.540) (0.331) (0.272) (0.762) (0.698)

Encryption 1.077 1.076 1.604 1.142 0.672
(0.734) (0.828) (0.159) (0.611) (0.148)

Single Sign-On 1.232 1.109 1.181 1.283 1.303
(0.150) (0.669) (0.382) (0.149) (0.205)

HIE 0.713*** 0.686* 0.667** 0.774* 0.816
(0.008) (0.069) (0.015) (0.098) (0.291)

EDI 1.118 1.628 1.354 0.975 0.814
(0.714) (0.342) (0.460) (0.941) (0.578)

RIS 0.654 0.365* 0.566 1.148 0.565
(0.370) (0.094) (0.277) (0.855) (0.451)

Medium 1.655* 2.180 1.520 1.540 1.897
(0.070) (0.181) (0.246) (0.165) (0.126)

Large 4.160*** 7.894*** 4.574*** 3.285*** 3.994***
(0.000) (0.000) (0.000) (0.000) (0.001)

Pseudo-R-Squared 0.05 0.08 0.07 0.04 0.04
Hospital Count 3709 3709 3709 3709 3709
Breach Type Count 278 107 169 179 117
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Table 11: Hazard Ratios: Encryption Magnet Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 1.003 0.989 1.010 1.008 0.987
(0.795) (0.579) (0.495) (0.540) (0.429)

Advanced EMR 0.840 1.240 0.868 0.731 0.922
(0.391) (0.568) (0.554) (0.181) (0.813)

Firewall 1.052 2.191 1.264 0.829 0.880
(0.861) (0.207) (0.541) (0.555) (0.758)

Spam/Spyware Filter 0.595* 0.481* 0.481** 0.621 0.859
(0.066) (0.071) (0.040) (0.122) (0.692)

Encryption 1.000 1.000 1.000 1.000 1.000
(.) (.) (.) (.) (.)

Single Sign-On 1.127 0.982 1.008 1.163 1.369
(0.404) (0.942) (0.963) (0.379) (0.158)

HIE 0.724** 0.692* 0.663** 0.776 0.870
(0.013) (0.087) (0.013) (0.105) (0.508)

EDI 1.354 1.811 1.586 1.314 0.892
(0.299) (0.315) (0.222) (0.433) (0.799)

RIS 0.549 0.442 0.518 0.655 0.391
(0.219) (0.287) (0.222) (0.503) (0.225)

Medium 1.650 1.628 1.492 1.702 1.979
(0.113) (0.455) (0.308) (0.138) (0.175)

Large 4.344*** 7.599*** 4.743*** 3.600*** 4.178***
(0.000) (0.000) (0.000) (0.000) (0.004)

Pseudo-R-Squared 0.05 0.09 0.07 0.05 0.05
Hospital Count 3348 3348 3348 3348 3348
Breach Type Count 261 96 163 174 105

52



Table 12: Hazard Ratios: Spam Filter Magnet Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 1.003 1.051** 1.012 0.986 0.999
(0.802) (0.019) (0.416) (0.337) (0.954)

Advanced EMR 1.068 1.238 0.984 0.991 1.236
(0.767) (0.565) (0.950) (0.970) (0.550)

Firewall 1.456 4.382 1.237 1.088 2.381
(0.286) (0.146) (0.605) (0.824) (0.217)

Spam/Spyware Filter 1.000 1.000 1.000 1.000 1.000
(.) (.) (.) (.) (.)

Encryption 1.033 0.912 1.284 1.128 0.735
(0.884) (0.792) (0.418) (0.653) (0.323)

Single Sign-On 1.178 0.994 1.062 1.245 1.356
(0.264) (0.980) (0.750) (0.206) (0.170)

HIE 0.679*** 0.714 0.637*** 0.704** 0.790
(0.003) (0.119) (0.007) (0.025) (0.233)

EDI 1.050 1.502 1.330 0.937 0.689
(0.871) (0.425) (0.480) (0.849) (0.319)

RIS 0.435* 0.292* 0.372** 0.632 0.423
(0.063) (0.058) (0.040) (0.467) (0.257)

Medium 1.529 1.899 1.427 1.468 1.731
(0.125) (0.296) (0.316) (0.211) (0.195)

Large 3.901*** 7.638*** 4.260*** 3.052*** 3.741***
(0.000) (0.000) (0.000) (0.000) (0.002)

Pseudo-R-Squared 0.05 0.10 0.06 0.03 0.04
Hospital Count 3545 3545 3545 3545 3545
Breach Type Count 266 100 162 173 111

The results of this Section therefore suggest a limited role for the Magnet Externality, the
user-to-user externality that shows up in the size of the network, when the network is measured
as the set of hospitals that use some particular EMR vendor or other security technology.
Instead, I see evidence that attackers scale their attacks at the state level, whereby either state-
level policies or differences in the lucrativeness of various hospitals’ records drive differences
in group outcomes.

4.10.3 The Gatekeeper Effect

The “Gatekeeper” Effect emerges when a large EMR vendor is able to better secure its users
when there are many than when there are few thanks to economies of scale. That is, the
Gatekeeper Effect allows larger vendors to better secure their hospitals than the smaller ones.

Table 13 begins by analyzing how looking at the identity of the specific vendor changes a
hospital’s breach risk.
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Table 13: Hazard Ratios, Breach: Intensive Margin

Breach Breach Breach

Basic EMR 1.235 (0.577) 1.033 (0.933) 1.066 (0.868)
Advanced EMR 1.016 (0.918) 1.080 (0.630) 0.987 (0.935)
Firewall 1.023 (0.909) 0.968 (0.873) 0.999 (0.995)
Spam/Spyware Filter 0.708* (0.091) 0.800 (0.315) 0.811 (0.378)
Encryption 1.239 (0.210) 1.152 (0.401) 1.104 (0.564)
Single Sign-On 1.215 (0.111) 1.152 (0.267) 1.154 (0.263)
HIE 0.891 (0.350) 0.930 (0.576) 0.822 (0.152)
EDI 1.076 (0.710) 1.005 (0.980) 1.028 (0.890)
RIS 0.926 (0.864) 0.612 (0.234) 0.646 (0.281)
Medium 1.171 (0.498) 1.213 (0.430) 1.196 (0.475)
Large 2.995*** (0.000) 2.959*** (0.000) 2.719*** (0.000)
Large Vendor 1.554 (0.225)
Self-Developed 4.136*** (0.008)
Small Vendor 1.000 (.)
Allscripts 2.076** (0.045)
CPSI 1.100 (0.836)
Cerner 1.466 (0.259)
Epic 1.720 (0.112)
HIM 0.690 (0.541)
Healthland 0.445 (0.438)
McKesson 1.621 (0.192)
Meditech 0.937 (0.850)
Other 1.000 (.)
Self-Developed 3.318** (0.024)
Siemens 1.326 (0.500)

Pseudo-R-Squared 0.06 0.06 0.06
Hospital Count 4232 4227 4227
Breach Type Count 381 345 345

I find that simply using any large vendor is worse than using any small vendor for a hos-
pital’s breach risk, suggesting that large vendors do not benefit from any kind of Gatekeeper
Effect. Similar to the magnet effect, using any large vendor is worse than any small vendor,
though the difference here is in using the identity of the vendor rather than just its size.

Notably, breach risk lowers if a hospital moves from self-developed software to a large
vendor: going it alone is certainly worse than using an established vendor’s product. However,
I see the opposite of a gatekeeper effect, whereby large vendors seem to be providing worse
security to their customers.

The results persist in Table 14, which examine cyber vs. physical breaches, where cyber
breaches are exactly the kind that good software should be able to prevent. Here, we see
an even worse effect on breaches from using Self-Developed software, but also from using
any Large Vendor over any Small Vendor on cyber breaches but no statistical significance for
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physical breaches. That is, using a large vendor appears to hasten cyber breaches for hospitals

Table 14: Hazard Ratios, Total vs. Cyber vs. Physical Breaches

Breach Cyber Physical

Basic EMR 1.033 (0.933) 3.853 (0.240) 0.737 (0.447)
Advanced EMR 1.080 (0.630) 1.062 (0.808) 1.128 (0.550)
Firewall 0.968 (0.873) 1.449 (0.234) 0.791 (0.322)
Spam/Spyware Filter 0.800 (0.315) 0.658 (0.162) 0.840 (0.511)
Encryption 1.152 (0.401) 1.116 (0.659) 1.245 (0.309)
Single Sign-On 1.152 (0.267) 1.112 (0.623) 1.173 (0.302)
HIE 0.930 (0.576) 1.034 (0.885) 0.979 (0.891)
EDI 1.005 (0.980) 0.889 (0.701) 1.139 (0.604)
RIS 0.612 (0.234) 0.301** (0.021) 1.118 (0.860)
Medium 1.213 (0.430) 1.519 (0.338) 1.133 (0.669)
Large 2.959*** (0.000) 4.397*** (0.000) 2.624*** (0.000)
Large Vendor 1.554 (0.225) 1.31e+09*** (0.000) 1.108 (0.780)
Self-Developed 4.136*** (0.008) 7.62e+09 (.) 2.173 (0.237)
Small Vendor 1.000 (.) 1.000 (.) 1.000 (.)

Pseudo-R-Squared 0.06 0.10 0.06
Hospital Count 4227 4227 4227
Breach Type Count 345 133 224

I report similar results for crime vs. mistake breaches, which again suggest that the gate-
keeper effect – whereby a large vendor should be better at preventing cyberattacks thanks to
economies of scale in the cost of security across its users – is not present in the case of hospi-
tals.
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Table 15: Hazard Ratios, Total vs. Crime vs. Mistake Breaches

Breach Crime Mistake

Basic EMR 1.033 (0.933) 1.375 (0.553) 0.633 (0.367)
Advanced EMR 1.080 (0.630) 1.161 (0.441) 1.110 (0.699)
Firewall 0.968 (0.873) 0.938 (0.799) 0.977 (0.938)
Spam/Spyware Filter 0.800 (0.315) 0.680 (0.178) 0.985 (0.957)
Encryption 1.152 (0.401) 1.519** (0.046) 0.776 (0.289)
Single Sign-On 1.152 (0.267) 1.118 (0.486) 1.204 (0.340)
HIE 0.930 (0.576) 0.864 (0.359) 1.253 (0.315)
EDI 1.005 (0.980) 1.105 (0.677) 0.872 (0.656)
RIS 0.612 (0.234) 0.439* (0.053) 0.951 (0.946)
Medium 1.213 (0.430) 1.212 (0.542) 1.261 (0.531)
Large 2.959*** (0.000) 3.589*** (0.000) 2.510*** (0.005)
Large Vendor 1.554 (0.225) 7.245** (0.044) 0.594 (0.149)
Self-Developed 4.136*** (0.008) 25.850*** (0.003) 1.066 (0.943)
Small Vendor 1.000 (.) 1.000 (.) 1.000 (.)

Pseudo-R-Squared 0.06 0.09 0.06
Hospital Count 4227 4227 4227
Breach Type Count 345 220 137

Table 16 shows the results for the proportional hazards model when we include the identity
of the vendor as a covariate. Recall that coefficients greater than one increase the hazard rate
via multiplication.
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Table 16: Hazard Ratios, Total vs. Cyber vs. Physical Breaches

Breach Cyber Physical

Basic EMR 1.066 (0.868) 3.857 (0.235) 0.751 (0.479)
Advanced EMR 0.987 (0.935) 1.057 (0.833) 0.967 (0.869)
Firewall 0.999 (0.995) 1.525 (0.193) 0.817 (0.418)
Spam/Spyware Filter 0.811 (0.378) 0.655 (0.172) 0.858 (0.594)
Encryption 1.104 (0.564) 1.085 (0.740) 1.180 (0.450)
Single Sign-On 1.154 (0.263) 1.140 (0.553) 1.164 (0.325)
HIE 0.822 (0.152) 0.937 (0.791) 0.842 (0.301)
EDI 1.028 (0.890) 0.929 (0.810) 1.165 (0.552)
RIS 0.646 (0.281) 0.355** (0.047) 1.131 (0.845)
Medium 1.196 (0.475) 1.559 (0.345) 1.110 (0.720)
Large 2.719*** (0.000) 4.397*** (0.001) 2.339*** (0.002)
Allscripts 2.076** (0.045) 7.014* (0.066) 1.801 (0.146)
CPSI 1.100 (0.836) 5.763 (0.113) 0.711 (0.537)
Cerner 1.466 (0.259) 4.060 (0.173) 1.228 (0.576)
Epic 1.720 (0.112) 5.403 (0.103) 1.472 (0.294)
HIM 0.690 (0.541) 7.092* (0.095) 0.171* (0.096)
Healthland 0.445 (0.438) 0.000 (.) 0.398 (0.382)
McKesson 1.621 (0.192) 7.279* (0.057) 1.002 (0.997)
Meditech 0.937 (0.850) 2.778 (0.321) 0.780 (0.503)
Other 1.000 (.) 1.000 (.) 1.000 (.)
Self-Developed 3.318** (0.024) 25.455*** (0.003) 1.812 (0.383)
Siemens 1.326 (0.500) 4.037 (0.207) 1.009 (0.985)

Pseudo-R-Squared 0.06 0.11 0.06
Hospital Count 4227 4227 4227
Breach Type Count 345 133 224

Finally, Tables 17 and 18 show the results for crime and cyber breaches only – the most
relevant to this paper.
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Table 17: Hazard Ratios, Crime: Intensive Margin

Crime Crime Crime

Basic EMR 1.713 (0.249) 1.375 (0.553) 1.480 (0.468)
Advanced EMR 1.088 (0.645) 1.161 (0.441) 1.077 (0.710)
Firewall 1.012 (0.962) 0.938 (0.799) 0.978 (0.932)
Spam/Spyware Filter 0.602* (0.063) 0.680 (0.178) 0.695 (0.225)
Encryption 1.560** (0.042) 1.519** (0.046) 1.455* (0.075)
Single Sign-On 1.154 (0.355) 1.118 (0.486) 1.134 (0.437)
HIE 0.809 (0.172) 0.864 (0.359) 0.781 (0.142)
EDI 1.200 (0.464) 1.105 (0.677) 1.146 (0.572)
RIS 0.620 (0.301) 0.439* (0.053) 0.486* (0.081)
Medium 1.226 (0.503) 1.212 (0.542) 1.231 (0.522)
Large 3.669*** (0.000) 3.589*** (0.000) 3.487*** (0.000)
Large Vendor 7.245** (0.044)
Self-Developed 25.850*** (0.003)
Small Vendor 1.000 (.)
Allscripts 3.043** (0.050)
CPSI 1.985 (0.281)
Cerner 1.849 (0.259)
Epic 2.418 (0.111)
HIM 1.970 (0.352)
Healthland 0.000 (.)
McKesson 2.110 (0.197)
Meditech 1.423 (0.518)
Other 1.000 (.)
Self-Developed 6.779*** (0.004)
Siemens 1.950 (0.276)

Pseudo-R-Squared 0.08 0.09 0.09
Hospital Count 4232 4227 4227
Breach Type Count 239 220 220
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Table 18: Hazard Ratios, Cyber: Intensive Margin

Cyber Cyber Cyber

Basic EMR 6.770* (0.087) 3.853 (0.240) 3.857 (0.235)
Advanced EMR 1.123 (0.622) 1.062 (0.808) 1.057 (0.833)
Firewall 1.558 (0.140) 1.449 (0.234) 1.525 (0.193)
Spam/Spyware Filter 0.541** (0.031) 0.658 (0.162) 0.655 (0.172)
Encryption 1.229 (0.426) 1.116 (0.659) 1.085 (0.740)
Single Sign-On 1.179 (0.427) 1.112 (0.623) 1.140 (0.553)
HIE 1.044 (0.846) 1.034 (0.885) 0.937 (0.791)
EDI 0.993 (0.981) 0.889 (0.701) 0.929 (0.810)
RIS 0.364* (0.060) 0.301** (0.021) 0.355** (0.047)
Medium 1.351 (0.471) 1.519 (0.338) 1.559 (0.345)
Large 3.639*** (0.001) 4.397*** (0.000) 4.397*** (0.001)
Large Vendor 1.31e+09*** (0.000)
Self-Developed 7.62e+09 (.)
Small Vendor 1.000 (.)
Allscripts 7.014* (0.066)
CPSI 5.763 (0.113)
Cerner 4.060 (0.173)
Epic 5.403 (0.103)
HIM 7.092* (0.095)
Healthland 0.000 (.)
McKesson 7.279* (0.057)
Meditech 2.778 (0.321)
Other 1.000 (.)
Self-Developed 25.455*** (0.003)
Siemens 4.037 (0.207)

Pseudo-R-Squared 0.10 0.10 0.11
Hospital Count 4232 4227 4227
Breach Type Count 138 133 133

The results here confirm that indeed, some vendors are associated more strongly with data
breach risk than others. The standout is the coefficient on Self-Developed software, which
triples the rate of any breach. When we investigate cyber vs. physical breaches, the mecha-
nism emerges: self-developed software enables cyber breaches, multiplying the hazard rate by
twenty-five relative to the “other” category (which comprises any vendor that serves only a few
hospitals).

Similar results hold for other vendors: those that appear to significantly increase general
breach risk are, when broken down into cyber vs. physical breaches, really only increasing
cyber breach risk. The results therefore pass a sanity check – we would not necessarily expect
software to worsen physical breach risk, but maybe even mitigate it. Each of the large vendors
is worse for the hazard rate than the “Other” category, consisting of small vendors. Only
Healthland, a relatively small vendor, has no associated cyber breaches.
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These results are even unexpectedly expected: Allscripts was known to have had an ex-
ploitable vulnerability in its products during the sample period that was only discovered years
later (Davis (2018)). We can therefore in a sense uncover possible common vulnerabilities
even when official descriptions exclude them.

The results are threatened if a hospital’s choice of vendor is correlated with other unob-
served factors that lead them to choose the vendor and also face differential breach risk. How-
ever, in [redacted] I showed that nearly all hospital choices could be explained by observables:
basic hospital characteristics, their location, and their networks. That is, in practice, hospi-
tals are not necessarily comparing product characteristics to determine which vendor best suits
their needs and their security posture; rather, they are choosing what their peers, their neigh-
bors or their GPO are choosing. I include those observable characteristics as controls (not all
coefficients are displayed) in every specification.

In Table 19 I look at how breaches made by a third-party (crimes) differ from those that
were internal (mistakes). Here, no particular vendor stands out other than Allscripts and Self-
Developed software. Once again, self-developed software is likely to be worse than commer-
cially available software given the lack of hospital expertise in software development; and
Allscripts’ known vulnerability was likely exploited by hospitals who were not aware of or did
not patch the vulnerability in time (Davis (2018)).
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Table 19: Hazard Ratios, Total vs. Crime vs. Mistake Breaches

Breach Crime Mistake

Basic EMR 1.066 (0.868) 1.480 (0.468) 0.619 (0.344)
Advanced EMR 0.987 (0.935) 1.077 (0.710) 0.952 (0.856)
Firewall 0.999 (0.995) 0.978 (0.932) 1.006 (0.984)
Spam/Spyware Filter 0.811 (0.378) 0.695 (0.225) 0.969 (0.918)
Encryption 1.104 (0.564) 1.455* (0.075) 0.747 (0.233)
Single Sign-On 1.154 (0.263) 1.134 (0.437) 1.180 (0.393)
HIE 0.822 (0.152) 0.781 (0.142) 1.073 (0.758)
EDI 1.028 (0.890) 1.146 (0.572) 0.884 (0.693)
RIS 0.646 (0.281) 0.486* (0.081) 0.914 (0.905)
Medium 1.196 (0.475) 1.231 (0.522) 1.231 (0.584)
Large 2.719*** (0.000) 3.487*** (0.000) 2.232** (0.020)
Allscripts 2.076** (0.045) 3.043** (0.050) 1.189 (0.720)
CPSI 1.100 (0.836) 1.985 (0.281) 0.563 (0.381)
Cerner 1.466 (0.259) 1.849 (0.259) 1.100 (0.811)
Epic 1.720 (0.112) 2.418 (0.111) 1.083 (0.837)
HIM 0.690 (0.541) 1.970 (0.352) 0.000*** (0.000)
Healthland 0.445 (0.438) 0.000 (.) 0.596 (0.638)
McKesson 1.621 (0.192) 2.110 (0.197) 1.058 (0.905)
Meditech 0.937 (0.850) 1.423 (0.518) 0.554 (0.146)
Other 1.000 (.) 1.000 (.) 1.000 (.)
Self-Developed 3.318** (0.024) 6.779*** (0.004) 1.239 (0.818)
Siemens 1.326 (0.500) 1.950 (0.276) 0.630 (0.494)

Pseudo-R-Squared 0.06 0.09 0.06
Hospital Count 4227 4227 4227
Breach Type Count 345 220 137

Once again, the vendor itself is not directly attributed with the breach in any of the HHS
reported breaches – in all cases, hospitals only report that the breach happened but rarely if
ever have uncovered the cause of the breach by the time of reporting. Instead, I infer which
vendors might have had vulnerabilities by looking at which in the end were used by hospitals
at the time of their breaches. The results are reasonable, and line up with news reports of vul-
nerabilities and common sense. The backwards induction process I describe here is extremely
promising for settings in which we do not have explicitly vulnerability information but do have
information on outcomes and correlates: we can discover past possibly common vulnerabili-
ties by the existence of common outcomes. Essentially: we know which vendors to watch out
for.

The Gatekeeper effect is empirically related to the Magnet Effect in that here, we are
concerned with the size of the vendor (and the number of targets). The addition is the focus
on vendor identity, so we can see if particular vendors are better or worse at providing security
in general. The Magnet Effect specifically asks how the market share of the vendor influences
breach risk – as more hospitals gather under one umbrella, is each hospital more at risk?

61



There, I find no additional Magnet Effect beyond what was captured in the Gatekeeper Effect:
attackers target insecure software, but not necessarily because it is popular – rather, popular
software tends to be insecure. The results together suggest the market incentive does not
encourage good security to accompany a popular product.

In summary, I find little to no evidence of the Gatekeeper Externality, and instead find the
opposite. Per Section 3, given that the force driving higher welfare under monopoly was the
gatekeeper effect, the fact that it is empirically missing suggests antitrust policy faces almost
no efficiency tradeoff.

4.10.4 Peers’ Breaches: The Floodgates Effect

Next, I investigate the “floodgates effect”: once a hospital has chosen to use a particular tech-
nology, and once a peer hospital who uses that technology is breached, is the hospital then
more likely to experience a breach? Here, the concern is the scalability of the attack: once an
attacker learns how to breach, say, Epic’s EMR systems or Cisco’s Firewalls, their marginal
cost of repeating the attack is lower – making all other hospitals that use the same technology
cheaper to attack. Is there a floodgates effect, and, if so, which technologies release it?

The Floodgates effect is essentially a conditional Magnet Effect: the magnet effect con-
cerns the attacker’s extensive margin choice of which vendor to attack, while the floodgates
effect asks if, once the attacker has chosen to attack a vendor, if all users are at increased risk.

I test the Floodgates hypothesis by augmenting the specification from Section 4.10.2 with
the following additional term:

Perc. Group Breachesg,t “ 100ˆ
Number of Hospitals Breached in Group g at t

Number of Hospitals in Group g at t

That is: what percentage of the peer group was breached that year? Each coefficient corre-
sponds to the change in the hazard rate following a one percentage point increase in the share
of peer hospitals breached. As with the Magnet Effect, I test different peer groups to identify
the relevant group through which attacks might be scalable.

In the interest of concision, I exclude coefficients from the control variables from display.
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Table 20: Hazard Ratios: State Floodgates Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 1.071* 1.138** 1.121*** 1.046 1.023
(0.064) (0.043) (0.008) (0.311) (0.738)

Perc. Group Breaches 0.981 0.763*** 0.924 0.846** 0.564***
(0.669) (0.009) (0.242) (0.025) (0.000)

Advanced EMR 1.112 1.398 1.235 1.063 1.062
(0.495) (0.170) (0.269) (0.750) (0.807)

Firewall 1.014 1.670* 0.976 0.813 1.107
(0.945) (0.098) (0.923) (0.360) (0.728)

Spam/Spyware Filter 0.709* 0.539** 0.613* 0.769 0.855
(0.096) (0.031) (0.073) (0.260) (0.543)

Encryption 1.240 1.206 1.576** 1.319 0.844
(0.214) (0.497) (0.042) (0.182) (0.504)

Single Sign-On 1.234* 1.208 1.152 1.251 1.404*
(0.077) (0.338) (0.350) (0.120) (0.058)

HIE 0.951 1.085 0.857 0.987 1.311
(0.678) (0.709) (0.315) (0.927) (0.194)

EDI 1.040 1.008 1.165 1.132 0.907
(0.841) (0.979) (0.538) (0.610) (0.742)

RIS 1.030 0.589 0.795 1.742 1.340
(0.940) (0.318) (0.592) (0.363) (0.694)

Medium 1.341 1.671 1.458 1.252 1.288
(0.202) (0.238) (0.219) (0.406) (0.455)

Large 3.642*** 4.928*** 4.743*** 3.392*** 2.913***
(0.000) (0.000) (0.000) (0.000) (0.001)

Pseudo-R-Squared 0.05 0.07 0.06 0.05 0.05
Hospital Count 4232 4232 4232 4232 4232
Breach Type Count 381 138 239 255 155

I find that, if anything, a hospital breached in the same state lowers your own breach risk,
perhaps as information on vigilance is spread at the state level. The vigilance-effect is particu-
larly strong for mistake breaches, suggesting information may be spread on how to not repeat
unnecessary breaches internally.
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Table 21: Hazard Ratios: HIE Floodgates Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 0.997 1.001 0.995 0.998 1.001
(0.559) (0.906) (0.463) (0.763) (0.834)

Perc. Group Breaches 1.033*** 1.078*** 1.044*** 1.027** 1.093**
(0.002) (0.005) (0.000) (0.023) (0.032)

Advanced EMR 0.991 0.694 1.094 1.111 1.175
(0.980) (0.525) (0.869) (0.821) (0.776)

Firewall 0.952 1.063 1.308 0.949 0.650
(0.879) (0.900) (0.565) (0.879) (0.186)

Spam/Spyware Filter 0.832 1.299 0.610 0.725 1.233
(0.656) (0.626) (0.410) (0.423) (0.561)

Encryption 1.345 1.001 1.606 1.426 1.007
(0.365) (0.998) (0.240) (0.336) (0.988)

Single Sign-On 1.152 0.975 1.084 1.213 1.286
(0.440) (0.933) (0.753) (0.388) (0.339)

HIE 1.000 1.000 1.000 1.000 1.000
(.) (.) (.) (.) (.)

EDI 1.936 2.666 2.171 1.856 1.722
(0.193) (0.331) (0.297) (0.303) (0.447)

RIS 6.34e+14 6.09e+14 6.86e+13*** 2.17e+14 1.60e+14
(.) (.) (0.000) (.) (.)

Medium 1.166 1.876 1.011 1.060 1.305
(0.672) (0.428) (0.984) (0.889) (0.578)

Large 3.340*** 8.005*** 4.067*** 2.537*** 2.909***
(0.000) (0.001) (0.002) (0.009) (0.009)

Pseudo-R-Squared 0.05 0.10 0.09 0.04 0.05
Hospital Count 2935 2935 2935 2935 2935
Breach Type Count 174 66 96 114 83

In health information exchanges, however, I see across-the-board increases in one’s own
breach risk when a peer has experienced a breach. There, it may be that the technology itself
is flawed, or that in the later period – when HIEs were commonplace – the entire HIE is
compromised (as Choi et al. (2023) claim is possible). Again, the small sample size means
results must be taken with caution.
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Table 22: Hazard Ratios: EMR Vendor Floodgates Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 0.971** 0.984 0.972 0.971* 0.992
(0.028) (0.469) (0.113) (0.097) (0.712)

Perc. Group Breaches 0.818** 0.911 0.985 0.625*** 0.579**
(0.032) (0.652) (0.870) (0.002) (0.046)

Advanced EMR 0.966 1.103 1.071 0.926 0.926
(0.831) (0.700) (0.732) (0.708) (0.777)

Firewall 1.026 1.641 0.977 0.812 1.062
(0.904) (0.130) (0.929) (0.400) (0.848)

Spam/Spyware Filter 0.833 0.635 0.704 0.895 1.011
(0.441) (0.135) (0.250) (0.694) (0.970)

Encryption 1.028 1.019 1.373 1.095 0.686
(0.874) (0.942) (0.143) (0.690) (0.133)

Single Sign-On 1.170 1.170 1.124 1.170 1.249
(0.204) (0.445) (0.449) (0.298) (0.243)

HIE 0.876 0.934 0.818 0.883 1.090
(0.344) (0.783) (0.262) (0.465) (0.700)

EDI 0.957 0.863 1.005 1.097 0.902
(0.827) (0.627) (0.982) (0.726) (0.752)

RIS 0.813 0.451 0.607 1.651 1.680
(0.599) (0.107) (0.201) (0.467) (0.586)

Medium 1.384 1.994 1.484 1.217 1.318
(0.200) (0.148) (0.230) (0.505) (0.473)

Large 3.487*** 6.332*** 4.700*** 2.802*** 2.579***
(0.000) (0.000) (0.000) (0.000) (0.009)

Pseudo-R-Squared 0.05 0.08 0.07 0.05 0.06
Hospital Count 4225 4225 4225 4225 4225
Breach Type Count 343 133 220 222 135

For EMRs, we see exactly the floodgates effect expected if third-party attackers are scaling
attacks through technology: the crime breaches in particular show the strongest (and only sta-
tistically significant) floodgates effect, with a 1% increase in the share of peers who experience
a breach increasing one’s own breach risk by 15%. We see no effect for physical or mistake
breaches, exactly because those breaches do not scale well and do involve a third-party at-
tacker, respectively. On point estimate, cyber breaches show the same floodgates effect, but
the crime result shows that it really is the presence of a third party that ensures the attack is, in
the end, repeated.

For our security technologies, Firewalls show a small floodgates effect, while the other
technologies do not.
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Table 23: Hazard Ratios: Firewall Floodgates Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 1.002 1.002 1.004 1.003 0.999
(0.428) (0.606) (0.209) (0.397) (0.888)

Perc. Group Breaches 0.922 0.936 1.021* 0.736 0.581***
(0.127) (0.571) (0.069) (0.162) (0.006)

Advanced EMR 0.964 1.419 0.954 0.816 0.984
(0.853) (0.320) (0.844) (0.356) (0.958)

Firewall 1.000 1.000 1.000 1.000 1.000
(.) (.) (.) (.) (.)

Spam/Spyware Filter 0.822 0.666 0.647 0.903 1.198
(0.531) (0.328) (0.276) (0.783) (0.666)

Encryption 1.087 1.079 1.597 1.158 0.681
(0.704) (0.821) (0.163) (0.574) (0.162)

Single Sign-On 1.237 1.109 1.177 1.299 1.326
(0.143) (0.668) (0.391) (0.134) (0.177)

HIE 0.724** 0.687* 0.665** 0.797 0.850
(0.011) (0.071) (0.014) (0.147) (0.407)

EDI 1.116 1.621 1.348 0.978 0.839
(0.719) (0.346) (0.467) (0.948) (0.635)

RIS 0.664 0.366* 0.566 1.179 0.574
(0.386) (0.095) (0.277) (0.827) (0.465)

Medium 1.640* 2.169 1.509 1.519 1.858
(0.075) (0.183) (0.255) (0.178) (0.139)

Large 4.146*** 7.872*** 4.529*** 3.268*** 3.952***
(0.000) (0.000) (0.000) (0.000) (0.001)

Pseudo-R-Squared 0.05 0.08 0.07 0.04 0.05
Hospital Count 3700 3700 3700 3700 3700
Breach Type Count 278 107 169 179 117
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Table 24: Hazard Ratios: Encryption Floodgates Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 1.003 0.988 1.010 1.010 0.987
(0.784) (0.527) (0.472) (0.456) (0.458)

Perc. Group Breaches 0.982 0.988 0.934 0.950 1.018
(0.552) (0.885) (0.273) (0.360) (0.749)

Advanced EMR 0.830 1.241 0.855 0.718 0.911
(0.363) (0.565) (0.517) (0.157) (0.785)

Firewall 1.034 2.155 1.227 0.814 0.879
(0.908) (0.215) (0.592) (0.518) (0.754)

Spam/Spyware Filter 0.598* 0.484* 0.484** 0.622 0.859
(0.069) (0.073) (0.042) (0.126) (0.692)

Encryption 1.000 1.000 1.000 1.000 1.000
(.) (.) (.) (.) (.)

Single Sign-On 1.131 0.981 1.029 1.172 1.334
(0.391) (0.939) (0.877) (0.355) (0.195)

HIE 0.715** 0.693* 0.653** 0.760* 0.854
(0.010) (0.090) (0.010) (0.079) (0.450)

EDI 1.340 1.793 1.574 1.309 0.882
(0.314) (0.321) (0.227) (0.441) (0.780)

RIS 0.549 0.443 0.517 0.659 0.387
(0.218) (0.285) (0.222) (0.510) (0.219)

Medium 1.687 1.609 1.488 1.756 2.110
(0.106) (0.467) (0.313) (0.129) (0.163)

Large 4.377*** 7.493*** 4.673*** 3.638*** 4.381***
(0.000) (0.000) (0.000) (0.000) (0.005)

Pseudo-R-Squared 0.06 0.09 0.07 0.05 0.05
Hospital Count 3333 3333 3333 3333 3333
Breach Type Count 259 96 162 172 104
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Table 25: Hazard Ratios: Spam Filter Floodgates Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 1.003 1.052** 1.017 0.986 0.999
(0.783) (0.018) (0.280) (0.347) (0.971)

Perc. Group Breaches 1.002 1.030 0.852* 1.017 0.959
(0.947) (0.702) (0.065) (0.251) (0.756)

Advanced EMR 1.101 1.235 0.984 1.033 1.380
(0.669) (0.570) (0.951) (0.900) (0.381)

Firewall 1.457 4.344 1.243 1.095 2.376
(0.285) (0.148) (0.598) (0.811) (0.218)

Spam/Spyware Filter 1.000 1.000 1.000 1.000 1.000
(.) (.) (.) (.) (.)

Encryption 1.009 0.895 1.286 1.097 0.702
(0.966) (0.751) (0.415) (0.727) (0.252)

Single Sign-On 1.197 1.030 1.083 1.249 1.379
(0.222) (0.908) (0.674) (0.203) (0.153)

HIE 0.674*** 0.696* 0.625*** 0.704** 0.799
(0.002) (0.093) (0.005) (0.026) (0.260)

EDI 1.037 1.492 1.328 0.922 0.674
(0.904) (0.431) (0.483) (0.812) (0.294)

RIS 0.429* 0.296* 0.374** 0.615 0.395
(0.059) (0.061) (0.042) (0.443) (0.221)

Medium 1.554 1.903 1.432 1.497 1.798
(0.117) (0.295) (0.312) (0.198) (0.182)

Large 3.909*** 7.530*** 4.218*** 3.076*** 3.824***
(0.000) (0.000) (0.000) (0.000) (0.002)

Pseudo-R-Squared 0.05 0.09 0.06 0.04 0.05
Hospital Count 3534 3534 3534 3534 3534
Breach Type Count 264 99 161 172 110

4.10.5 The Sum-of-Efforts Effect

Finally, I test the Sum-of-Efforts hypothesis, put forth in Florencio and Herley (2011) and
formalized in Section 3. The attacker’s extensive margin choice – whether to attack the group
of hospitals – depends exactly on the total effort put forth by the hospitals, weighted by their
value – the

ř

ip1 ´ siqvi in Section 3. Therefore, an increase in si by even just one hospital
decreases the attacker’s incentive for attacking the entire group. Each individual hospital’s
investment, then, has a positive externality, keeping not just itself safe but also all others.

I formally test whether there exists a positive externality of peer investment by explicitly
adding in peer investment into the specification from Section 4.10.4 as follows: the fraction of
peers in the group who have implemented each of the security technologies:

Peer Securityg,t “ 100ˆ
Number of Hospitals With Technology s at t

Number of Hospitals in Group g at t
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where technology s is one of the three main security technologies: a firewall, encryption, and a
spam/spyware filter. Note that I am not controlling for the type of the software or its vendor –
which itself defines one of the relevant groups – but rather just the presence of the technology.
I continue to control for a hospital’s own choice of technology.

Note that in the case of hospitals’ EMR systems, these technologies are not necessarily
built-in but must be requested and implemented by the hospital itself – e.g., not everyone who
uses Epic will necessarily possess a Firewall. The mechanism also requires that attackers know
and are making decisions about hospital breaches on the basis of the security technologies they
may possess. If attackers expect, say, 60% of Epic-using hospitals to have a Firewall, they
may make an informed choice about their threat investments, either by trying to bypass the
Firewall or choosing a different group to target. However, if a hospital either keeps its security
choices secret10 then we may fail to detect any total efforts effect. Identification will require
that hospitals do not make coordinated security technology choices, so that implementation
is exogenous to the network formation process. In Marti (2024), I found hospitals do not
respond to peers’ breaches but do respond to their own by implementing security technologies.
Until that breach occurs, however, the pattern of implementation simply follows time and basic
hospital characteristics.

I begin with the within-state total efforts effect: as more of a state’s hospitals implement se-
curity technologies, does each hospital benefit from the total efforts externality, reducing their
own breach risk? Note that there, I take security technology activity as exogenous. Underlying
the implementation of security technology may be a broader state-level policy encouraging se-
curity, or increased concerns about breaches in large states (see Table 6). I cannot differentiate,
but can only comment on what happens to basic breach risk endogenously.

Further, group use of security technology may be correlated with group breaches if we
expect security technology to actually be affected, leading to potential multicollinearity issues.
However, including both helps us separate out the indirect effect of group firewall use on group
breaches from the total efforts mechanism, group firewall use on scaled group attack attempts.
Since the panel dataset is large, and previous estimates suggest reactive rather than proactive
security technology use, I consider it reasonable to assume some independence.

10Not likely, as I use semi-public datasets throughout this analysis,
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Table 26: Hazard Ratios: State Sum-of-Efforts Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 1.055 1.143** 1.105** 1.038 1.028
(0.167) (0.047) (0.034) (0.445) (0.691)

Perc. Group Breaches 0.986 0.734*** 0.926 0.850** 0.554***
(0.750) (0.005) (0.252) (0.030) (0.000)

Perc. Group Firewall 1.000 1.027 0.999 0.986 1.007
(1.000) (0.414) (0.961) (0.443) (0.772)

Perc. Group Encryption 0.999 1.008 0.997 1.002 1.008
(0.864) (0.549) (0.772) (0.874) (0.471)

Perc. Group Spam Filter 0.993 0.977 0.995 1.004 0.993
(0.665) (0.433) (0.805) (0.847) (0.765)

Advanced EMR 1.126 1.370 1.250 1.075 1.050
(0.449) (0.199) (0.245) (0.706) (0.843)

Firewall 1.025 1.576 0.987 0.847 1.087
(0.901) (0.147) (0.959) (0.473) (0.772)

Spam/Spyware Filter 0.718 0.569** 0.615* 0.764 0.869
(0.113) (0.048) (0.081) (0.256) (0.583)

Encryption 1.253 1.162 1.604** 1.320 0.818
(0.199) (0.582) (0.037) (0.181) (0.431)

Single Sign-On 1.241* 1.195 1.162 1.259 1.398*
(0.071) (0.366) (0.326) (0.110) (0.060)

HIE 0.976 1.070 0.881 0.999 1.298
(0.850) (0.757) (0.430) (0.996) (0.222)

EDI 1.045 0.984 1.173 1.142 0.895
(0.825) (0.958) (0.520) (0.586) (0.706)

RIS 1.033 0.593 0.793 1.733 1.344
(0.936) (0.331) (0.586) (0.368) (0.690)

Medium 1.338 1.686 1.451 1.251 1.297
(0.207) (0.230) (0.227) (0.409) (0.442)

Large 3.635*** 4.980*** 4.723*** 3.391*** 2.940***
(0.000) (0.000) (0.000) (0.000) (0.000)

Pseudo-R-Squared 0.05 0.07 0.06 0.05 0.05
Hospital Count 4232 4232 4232 4232 4232
Breach Type Count 381 138 239 255 155

Focus here on the last three covariates: the percentage of the group that had a Firewall,
Encryption, and Spam Filter respectively. In Table 26, we see that no coefficient is significant,
though the magnet effect and floodgates effect remain statistically significant for the cases of
Cyber and Crime breaches. That is, the additional exploration of the total efforts effect – at
least when measured as the fraction of hospitals that use a Firewall, Encryption, or Spam Filter
– does not appear to add much to our understanding of how breaches spread at the state level.
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Table 27: Hazard Ratios: HIE Sum-of-Efforts Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 0.995 1.000 0.994 0.996 0.998
(0.318) (0.980) (0.375) (0.480) (0.811)

Perc. Group Breaches 0.994 1.063*** 1.011 0.999 1.047
(0.674) (0.001) (0.306) (0.949) (0.373)

Perc. Group Firewall 0.984** 0.982 0.984* 0.987* 0.982*
(0.027) (0.118) (0.074) (0.095) (0.090)

Perc. Group Encryption 1.007 1.002 0.997 1.010 1.018
(0.472) (0.911) (0.772) (0.356) (0.234)

Perc. Group Spam Filter 0.964*** 0.973 0.975* 0.966*** 0.960**
(0.003) (0.236) (0.090) (0.005) (0.027)

Advanced EMR 1.207 0.578 1.256 1.325 1.388
(0.641) (0.286) (0.681) (0.545) (0.573)

Firewall 1.197 1.500 1.737 1.154 0.775
(0.625) (0.521) (0.320) (0.709) (0.461)

Spam/Spyware Filter 0.979 1.622 0.693 0.851 1.482
(0.963) (0.464) (0.575) (0.707) (0.277)

Encryption 1.296 1.045 1.676 1.323 0.896
(0.456) (0.932) (0.238) (0.466) (0.814)

Single Sign-On 1.203 0.975 1.108 1.254 1.336
(0.331) (0.936) (0.693) (0.320) (0.282)

HIE 1.000 1.000 1.000 1.000 1.000
(.) (.) (.) (.) (.)

EDI 2.015 2.656 2.148 1.936 1.880
(0.160) (0.314) (0.283) (0.273) (0.377)

RIS 9.36e+14 7.16e+14 7.81e+15 9.31e+13 3.79e+14
(.) (.) (.) (.) (.)

Medium 1.147 1.936 0.987 1.041 1.286
(0.707) (0.399) (0.981) (0.924) (0.600)

Large 3.287*** 8.044*** 3.968*** 2.473** 2.867**
(0.000) (0.001) (0.002) (0.011) (0.011)

Pseudo-R-Squared 0.06 0.12 0.10 0.05 0.06
Hospital Count 2935 2935 2935 2935 2935
Breach Type Count 174 66 96 114 83

Next, Table 27 looks at how attacks might spread through Health Information Exchanges.
Under the magnet effect (Table 7) and floodgates effect (Table 21), I found a strong floodgates
effect across all breach types, though no magnet effect. Here, that floodgates effect coefficient
is only statistically significant for cyber breaches – following the general hypothesis of this
Section – while in other cases, the total efforts effect suggests that as more of the group adopts
a spam filter, the rest of the group becomes safer (recall that a coefficient less than one indicates
postponed breaches, or prolonged security).
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Table 28: Hazard Ratios: EMR Vendor Sum-of-Efforts Effect

Breach Cyber Crime Physical Mistake

Group Size (Market Share) 0.981 0.994 0.984 0.980 0.996
(0.189) (0.793) (0.402) (0.256) (0.843)

Perc. Group Breaches 0.795** 0.898 0.958 0.537*** 0.555**
(0.016) (0.604) (0.662) (0.000) (0.032)

Perc. Group Firewall 1.023 0.965 0.978 1.052 1.100
(0.493) (0.508) (0.548) (0.254) (0.128)

Perc. Group Encryption 0.945** 1.019 0.964 0.918** 0.936
(0.032) (0.697) (0.226) (0.018) (0.106)

Perc. Group Spam Filter 0.978 0.994 1.003 0.960 0.942
(0.419) (0.856) (0.895) (0.260) (0.210)

Advanced EMR 1.038 1.117 1.134 0.999 0.983
(0.825) (0.671) (0.545) (0.996) (0.952)

Firewall 0.998 1.647 0.979 0.774 1.000
(0.994) (0.124) (0.935) (0.308) (1.000)

Spam/Spyware Filter 0.864 0.642 0.703 0.939 1.082
(0.547) (0.148) (0.254) (0.831) (0.793)

Encryption 1.054 1.022 1.415 1.134 0.694
(0.771) (0.932) (0.118) (0.591) (0.150)

Single Sign-On 1.215 1.179 1.160 1.220 1.271
(0.126) (0.430) (0.351) (0.201) (0.216)

HIE 0.952 0.964 0.880 0.959 1.129
(0.743) (0.887) (0.505) (0.821) (0.602)

EDI 0.968 0.866 1.014 1.118 0.931
(0.874) (0.636) (0.955) (0.681) (0.833)

RIS 0.918 0.473 0.667 2.071 2.076
(0.829) (0.128) (0.299) (0.312) (0.471)

Medium 1.363 1.986 1.473 1.194 1.302
(0.226) (0.153) (0.242) (0.550) (0.496)

Large 3.459*** 6.310*** 4.685*** 2.758*** 2.557***
(0.000) (0.000) (0.000) (0.000) (0.009)

Pseudo-R-Squared 0.06 0.08 0.07 0.06 0.06
Hospital Count 4225 4225 4225 4225 4225
Breach Type Count 343 133 220 222 135

Finally, Table 28 affirms again that the most effective spillovers – positive externalities –
come from the EMR-groups’ implementation of spam filters. Those hospitals who use EMRs
whose other users have implemented a spam filter see a 18-22% in the reduction of their breach
hazard rate, varying by the type of breach. The reduction is greatest for cyber and crime
breaches – i.e. those that are perpetrated by a third-party and involve digital technologies.
Given that many breaches originate as phishing emails that then take over a computer or trick
the user into sharing credentials – such as those to their EMR system – it makes sense that
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group adoption of spam filters would generally deter attackers from using phishing tactics,
instead shifting to other tactics or other targets.

5 Conclusion: Which Theoretical Effects Dominate Em-
pirically?
In this Section, I empirically evaluate the state of cybersecurity in the U.S. healthcare sector
by combining three datasets: cybersecurity outcomes from the HHS, technology status from
HIMSS, and hospital characteristics from AHA. I present the first comprehensive analysis of
how hospital digitization has affected cybersecurity outcomes that takes into consideration
the structure of healthcare technology market competition – in particular, the lack of proper
interoperability and the high start-up costs – showing how hospitals’ own lack of true choices
leaves them unable to respond quickly or sufficiently to data breaches.

Further, the act of digitization itself (the “extensive margin”) creates new opportunities for
cybercriminals to target hospitals. When hospitals adopt basic technologies without advanced
directives or careful consideration, cyberattacks increase at partial expense of physical attacks.
Larger hospitals, and those without security technologies, are more likely to experience data
breaches at any given moment.

I use a “revealed security” approach to show how some technology vendors are likely to
be used by hospitals that experience data breaches, even when the cause of the breach is un-
known. My simple and flexible methodology allows anyone with breach outcome data to iden-
tify “hotspots,” or vendors who likely had unknown-to-them vulnerabilities being exploited by
third-party attackers.

Finally, I investigate the “network externalities” of cybersecurity. I find some evidence
for the “magnet effect,” where hospitals in large markets or using high-market-share EMR
vendors are more likely to experience data breaches. I also find support for the “floodgates
effect” as attacks spread through technology networks: hospitals that share an EMR vendor are
more likely to experience breaches in conjunction, compared with hospitals that are simply in
the same state, GPO, or health information exchange. That is, software monoculture allows
attacks to capture more value all at once. I find little evidence of a gatekeeper effect, and
instead find that large firms are providing their users with worse security, suggesting security
costs do not scale well. Finally, I find some evidence that group-level security can act to deter
attacks, through the total efforts effect, but only for extremely specific technologies like spam
filters.

From Section 3, we know that when the technology vendor does not experience economies
of scale in security costs, and when its own incentive to secure is lower than the value hospitals
stand to lose, that a concentrated market is not the optimal market structure. When the positive
externalities cannot outweigh the negative, the overall market may be better off forgoing any
positive network effects and instead focusing on breaking the attacker’s economies of scale.
By doing so, the market can eliminate the Magnet and the Floodgates Externalities at little
cost, keeping all hospitals, instead of commonly at risk of catastrophe, individually strong.
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