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Abstract
Over the past two decades, researchers have advanced large-scale
technical measurements of cybercrime to analyze techniques, tac-
tics, and procedures (TTP) in cybercrime operations. These quantifi-
cations are typically based on analyses of technical artifacts such as
domains, binaries, or attack traffic and could potentially inform cy-
bercrime policing – i.e., assisting law enforcement agencies (LEAs)
in determining how their scarce resources can be best put to use.
Yet, we do not know if this potential is being used, nor how such
measurement studies align with LEA needs. This paper investigates
the nexus of large-scale technical measurements and cybercrime
policing by combining a survey of previous scientific work with a
user study involving LEA professionals. We leverage the concept
of value chains to structure 38 studies featuring measurements of
phishing, booter services, and remote access trojans (RATs). We
scrutinize their data sources and characterize their findings to iden-
tify common denominators. Then, we let LEA professionals reflect
on some of these measurements and jointly identify the unexplored
potential for novel measurements that align with current needs
in cybercrime policing. We find that many academic studies focus
on components in the value chain that are considered less valu-
able to LEAs and that most measurements lack geographical or
attacker differentiation, thereby not allowing for concrete action
perspectives.
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1 Introduction
Cybercrime – referring to crime facilitated or committed by using
a computer [51] – has grown worldwide [26] and even surpassed
traditional crime in damages in some countries [8]. Traditionally,
LEAs relied heavily on criminological data collection efforts like
victimization surveys [54] or police reports [17, 33] for designing
and evaluating their interventions. However, it is a well-established
fact that the majority of cybercrime incidents are never reported
to the police [17, 33], so the actual amount of cybercrime could
be much higher than law enforcement agencies (LEAs) estimate.
To understand modern-day cybercrime, computer scientists create
novel detection methods to perform large-scale technical measure-
ments and capture data on cybercriminal techniques, tactics, and
procedures (TTP). Such measurements have the potential to inform
LEAs policing cybercrime in a robust and scalable way. Yet, we do
not know if this potential is being used, nor how such measurement
studies align with LEA needs.

In recent years, a wealth of large-scale technical measurements
of cybercrime have been published. Many of these studies revolve
around the creation of innovative detection methods, which are
afterward deployed to examine a subset of the Internet to assess
their workings [15]. For example, within one year Konoth et al. [39],
Wang et al. [67], and Kharraz et al. [37] set out to create a robust
method able to detect browser-based cryptojacking. Other studies
examined phishing through large-scale Web scraping [5, 16, 38, 59,
69, 70], studied DDoS attacks trough network telescopes [30, 34, 42]
or deployed honeypots to discover RAT operators [24, 53] Such
measurements demonstrate how well a newly designed method
functions, but these studies have not been performed with a focus
on generating new insights into cybercriminal prevalence or TTP.

Demonstrating the success of a novel detection method can be
straightforward. Performing robust measurements of cybercrime
and assessing, for example, prevalence is, however, far from trivial.
In an overview of cybercrime studies, Clayton et al. [10] found
that the existence of concentrations of cybercriminal activity often
leads researchers to suggest that such concentrations are potential
vantage points for law enforcement interventions. While economic
factors cause some of those concentrations, others are the result of
measurement biases that mislead researchers into drawing wrong
conclusions. Even without such issues, it is unclear what value
these studies represent to LEAs. Additionally, in 2013, Anderson
et al. [2] reported on the insufficiency of cybercrime statistics and
encouraged governments to put more effort into detecting and
prosecuting cybercrime. Their follow-up study in 2019 reconfirmed
their findings, demanding governments increase detection efforts
to improve cybercrime statistics [1]. Recent academic studies in-
volving large-scale technical measurements could assist with these
efforts. However, we do not know how such measurements can
assist LEAs. To the best of our knowledge, no prior study has in-
vestigated how law enforcement professionals assess the value of
academic studies featuring large-scale technical measurements of
cybercrime for policing efforts.

In this paper, we combine a literature survey and a small user
study involving LEA professionals to address this gap and to answer
the following two research questions. First, RQ1: What are the
characteristics of large-scale technical cybercrime measurements?
Second, RQ2: How do LEAs evaluate these measurement studies
regarding their alignment with policing needs?

We answer the first question by surveying the top computer
security venues for large-scale technical measurements of cyber-
crime published in the last fifteen years (2007–2023). For feasibil-
ity, we scope our search to three cybercrimes that are extensively
empirically studied and received widespread attention by LEAs



Bijmans et al.

worldwide [19, 21, 22], namely phishing, booter services, and re-
mote access trojans (RATs). Measurement studies on these three
cybercrimes help us derive relevant characteristics of research that
might influence whether a study is more or less aligned with LEA
needs. Such characteristics are then relevant for measurement stud-
ies beyond these three cybercrimes. To structure our analysis, we
leverage the concept of cybercrime value chains [66], which dis-
sects cybercrimes in components and resources. For each study,
we identify the components in the value chain it investigates and
review its data collection, methods, and findings. Next, we report
on a workshop with LEA professionals that elicits their assessment
of a sample of studies and answers our second research question.
Additionally, we let participants generate ideas on how to improve
measurements to assist in cybercrime policing.

By combining our survey of 38 studies with the LEA workshop’s
results, we find that academic measurements focus on the deploy-
ment and execution of cybercrime, whereas LEAs desire to learn
more about development and monetization. We observe that the
majority of measurement studies lack geographical or attacker
differentiation, thereby not allowing for concrete, actionable per-
spectives for law enforcement.

In short, we make the following contributions:
(1) We survey 38 large-scale technical cybercrime measure-

ments and characterize datasets, methods, and findings,
which we combine with the first-ever assessment of scien-
tific measurements by law enforcement.

(2) We find that measurements often focus on the center part of
the value chain (deployment and execution), whereas LEAs
value insights at the ends of the value chain (development
and monetization) to support cybercrime policing.

(3) We observe that current measurement approaches largely
overlook geographical and attacker differences, resulting
in less actionable measurements for LEAs.

The remainder of this paper is structured as follows: we detail our
methodology in Section 2 and present the results of our survey
in Sections 3–6. Then, we report on our workshop with law en-
forcement in Section 7, critically discuss our work in Section 8, and
conclude in Section 9.

2 Methodology
This section first introduces the concept of cybercrime value chains,
explains our focus on the three selected cybercrimes, and elaborates
on our methodology to survey past scientific work.

Cybercrime Value Chains. To structure our synthesis of past scien-
tific work, we leverage the concept of cybercrime value chains [66]
to map large-scale measurements to value chain components. As cy-
bercrime relies on a delimited mix of resources to turn a profit [66],
we can structure components in the value chain with a required set
of resources as an input and a resource as an output. For example,
as illustrated in Figure 2, to deploy a phishing page, one needs a
phishing kit and a domain as input, which results in a phishing page
as output. Components in the value chain are not strictly sequential,
as some components can be executed in parallel (e.g., a booter ser-
vice can deploy its storefront website and perform reconnaissance
operations simultaneously). Instead of fulfilling all components in
the value chain themselves, modern-day cybercriminals rely on

specialists to fulfill specific components for them [4, 32, 66]. Spe-
cialized third parties provide resources, which can be products (e.g.,
software) as well as services (e.g., hosting infrastructure). For every
outsourced component, a specialist will take a cut. Hence, to avoid
these cuts or to expand operations, cybercriminals can decide to
self-organize components in the value chain. We refer to this prac-
tice as vertical integration [61]. Only a few [61] have studied the
cybercrime ecosystem with such a holistic view. As we demonstrate
in this work, most scholars focus their measurements on specific
components of a value chain instead of considering the complete
value chain.

Selection of Cybercrimes. We survey a large body of such measure-
ments to study the characteristics of large-scale technical measure-
ments of cybercrime and assess their value for law enforcement.
However, as scrutinizing all past measurements of every type of
cybercrime is near impossible, we scope our survey to three types of
cybercrime that received significant attention from both academics
and LEA and argue that identified characteristics are then relevant
for measurement studies beyond these three specific cybercrimes.
To discover what types of cybercrime measurements are valuable
for LEA, we search Europol’s ‘Internet Organised Crime Threat
Assessment’ (IOCTA) from 2019 until 2023 [19, 21, 22]. These re-
ports give an overview of the cybercrime landscape, as well as the
efforts LEA has made to police it. Cybercrimes mentioned in these
reports include ransomware, DDoS attacks, Business Email Com-
promise (BEC) fraud, dark markets, phishing, bulletproof hosting,
botnets, and many more. We constructed value chains for each
cybercrime, determined whether measurements were possible at
different phases along the chain, and initiated an initial literature
search to find large-scale technical measurement studies. It turns
out that certain cybercrimes allow for more measurements than
others. For example, we could find a plethora of phishing mea-
surement studies in the top venues, but none related to BEC fraud.
Consequently, we selected three types of cybercrime that received
attention from LEA and were measured frequently by scientists,
namely: phishing, booter services, and remote access Trojans (RATs).

Survey Approach. We employ a systematic approach to search for
studies performing large-scale technical measurements of one of
the selected cybercrimes. We start by selecting conferences and
journals. First, we take the Google Scholar top ten computer secu-
rity conferences and journals [29], supplemented by their relevant
co-located workshops. We extend this list with computer science
venues focused on Internet measurements and cybercrime. Ap-
pendix A contains the complete list of included conferences and
journals. In June 2023, we used the ACM Digital Library and IEEE
Xplore to search for papers published in these conferences or jour-
nals since 2007 – covering the last 15 years of academic research.
Conferences and workshops that are not in these libraries were
searched manually. To be included, the paper title or abstract must
contain one of the following terms: phish∗, booter∗, ddos, rat, remote
access trojan, cybercrime, cyber crime. Manual title and abstract
screening was performed on the resulting 615 papers. Through
this process, we identified 32 papers that contained a large-scale
technical measurement of one of the three selected cybercrimes.
We added 6 other relevant works discovered during our literature
research. In total, we found 38 studies, of which 19 papers measure
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Figure 1: Booter value chain with its components at the top and the required resources at the bottom.

phishing, 14 examine booter services, and 5 investigate RATs. We
examine these papers through the lens of cybercrime value chains.
We first identify which value chain component(s) the measurement
leverages. Next, we classify measurements as either passive (based
on an existing dataset, involving no scanning for artifacts or inter-
action with infrastructure) or active (based on an active collection
of artifacts, involving scanning for cybercriminal infrastructure,
etc.). Finally, we extract data sources and collect time ranges.

3 Booter Measurements
In a DDoS (Distributed Denial of Service) attack, a server, service,
or network is flooded with a massive volume of traffic, rendering it
unavailable to legitimate users. Executing a DDoS attack requires
significant resources and technical capabilities. To allow low-skilled
criminals to perform such attacks, criminal entrepreneurs have set
up so-called booter or stresser services, which offer DDoS attacks as
a service. In this section, we examine large-scale technical measure-
ments of booter services in earlier work. The booter service value
chain is depicted in Figure 1. Here, we identify four components.
First, during reconnaissance, the attacker finds the resources (e.g.,
vulnerable protocols) and scans for infrastructure to abuse. Dur-
ing deployment, criminal entrepreneurs set up shop and organize
their attack servers, domains, and their protections. Execution in-
volves the actual DDoS attack, involving both a client and a target,
and monetization revolves around all financial aspects of running
a booter service. Although DDoS attacks can also originate from
botnets or nation-state actors, several studies concur that booter ser-
vices exert a significant impact on the DDoS landscape [42, 46, 60].
We find 14 large-scale technical measurements of booter services
published between 2013 and 2021, list them in Table 1, and detail
them in the next paragraphs.

Datasets. Two main data sources are used to study booter services:
booter operations data found in databases or website scrapes and
DDoS observations through honeypots or darknets. Since 2013, a
variety of booter operations databases have been examined. First, an
analysis of TwBooter in [35], followed by an analysis of 14 booter ser-
vices in [55]. A year later, [36] scrutinized the databases of Asylum
Stresser and Lizard Stresser, and complemented their data collection
with website scrapes from vDOS. [60] used website scrapes and API
logs from vDOS together with the leaked database of CMDBooter
to validate their honeypot measurements. The vDOS database was
used again in 2017 by [7]. The other data source used to study
booters is honeypots, which capture amplification DDoS attacks.
Deploying such honeypots allows researchers to track attacks over
time and was initiated in [42], with the design of AmpPot – a hon-
eypot network that was deployed at 21 locations worldwide. The
same honeypot was later used in [46], which deployed eight of them
in Japan, and in [34], which deployed 24 of them worldwide. [60]

designed a different honeypot to measure amplification attacks and
deployed ±60 of them. Data collection continued, allowing for two
more years of data to be analyzed in [11]. The most recent honey-
pot measurement was presented by [30], in which an entirely new
honeypot network was built. This study deployed 549 instances
in five public clouds worldwide, demonstrating that the number
of honeypots needed to obtain sufficient attack coverage is much
higher than shown in the earlier work. Some studies complemented
their honeypot measurements with data from darknets – unused
IP ranges, also known as network telescopes [30, 34, 42].

Reconnaissance. Scanners are deployed to find vulnerable infras-
tructure to be used in DDoS attacks, which can be observed through
darknets. Deployment of such scanners was limited before 2012,
as found in [42]. Since then, scanning for DNS has gained more
popularity and increased for more protocols in 2014. However, by
attributing scanning IP addresses, [42] found that over 40% of all
scanners are operated by universities and security organizations
instead of DDoS providers. [60] claimed to have excluded such
‘white-hat’ scanners from their data and reported on 5,070 IP ad-
dresses scanning daily. During the measurement, they noticed an
increase in NTP and SSDP scanning and a slight decrease in DNS
scanning. The largest honeypot network to study reconnaissance
was deployed by [30]. It confirmed [42] by observing prevalent
research scans (30% of all scans), finding that responsive IPs make
scanners come back twice as fast, and noticing the same packets
used for both testing and attacking. Additionally, by periodically
switching honeypots between active and passive mode, the exis-
tence of a ‘memory’ of previously exploited servers was discovered,
indicating that attackers track vulnerable servers instead of op-
portunistically selecting them for their attacks. A similar pattern
was learned from leaked booter databases in [36] that noticed boot-
ers gravitating to using more stable amplifier infrastructure when
possible instead of scanning for vulnerable machinery.

Deployment. During deployment, booter operators assemble their
attack infrastructure and create a website to serve customers. In
2013, [35] examined TwBooter and revealed that only 15 servers
were used to perform their attacks, most of them hosted in the
Netherlands. Three years later, such servers were purchased by [36],
which allowed them to conclude that the required high uplink band-
width can be obtained with small investments. A different approach
was discovered in [55] that found that all but one (TwBooter) based
their attack infrastructure on Web shells instead. Web shells are
scripts that allow backdoor access to compromised machines, mak-
ing them part of the DDoS infrastructure. Scrutinizing 42 booter
websites in [9] learned that websites calling themselves ‘stressers’
did so to avoid legal problems. Most websites show a verbose page
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Table 1: Overview of large-scale booter service measurements. Measurements can be active (𝐴), passive (𝑃 ), or both (hybrid, 𝐻 ).
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Karami & McCoy [35] 2013 𝐻 ✓ 01/2013 – 03/2013
Chromik et al. [9] 2015 𝐴 09/2014
Krämer et al. [42] 2015 21 𝑃 2007 – 2015
Santanna et al. [55] 2015 𝐻 2011 – 2014
Santanna et al. [56] 2015 𝐻 ✓ 2013
Karami, Park & McCoy [36] 2016 𝑃 ✓ ✓ 2011 – 2015
Noroozian et al. [46] 2016 8 𝑃 2014 – 2015
Brunt, Pandey & McCoy [7] 2017 𝑃 ✓ 2014 – 2016
Jonker et al. [34] 2017 24 𝑃 03/2015 – 02/2017
Thomas, Clayton & Beresford [60] 2017 60 𝑃 2014 – 2017
Collier et al. [11] 2019 60 𝑃 ✓ 2014 – 2019, 2017 – 2019
Kopp et al. [41] 2019 𝑃 ✓ ✓ 2018 – 2019
Griffioen et al. [30] 2021 549 𝐻 08/2019 – 11/2019
Kopp, Dietzel & Hohlfeld [40] 2021 𝑃 09/2019 – 04/2020

with text and appealing advertisements to sell their services. Addi-
tionally, they noticed that nearly all websites have DDoS protection.
This was confirmed by [56], who tracked 102 booter websites over
time and observed increased use of such protection since 2011. In
2014, none of the analyzed booter services were unprotected. This
finding was confirmed in [36], together with the notion that this
was also to hamper take-down by law enforcement.

Execution – Customer. Behind every DDoS attack launched by a
booter is a customer. The various leaked databases give interesting
insights into the customer base of booters. [35] identified three
types of customers: gamers (launching attacks of less than 10 min-
utes), website attackers (launching attacks of one or two hours), and
privileged users (performing long attacks for more than two hours).
Most of the TwBooter customers could be categorized as gamers,
attacking roughly three targets per day for a short period. [55]
highlighted the importance of differentiating between registered
users and paying customers of booters, as the latter is significantly
smaller. It turns out that many users are just attracted to take a
look at what a service can offer, whereas only a few are interested
in performing attacks. [36] and [7] drew similar conclusions, as
they found that only roughly 13% and 15-23% of the users in their
examined databases ever paid for an attack, respectively. Multiple
booter databases showed differences in OPSEC of customers as
well [55]. Frequent customers are more likely to take precautions
by obfuscating their real IP address – e.g., by using a VPN or Tor.

Execution – Target. Several studies tried to map booter service at-
tack targets. [35] categorized most customers as gamers and, there-
fore, concluded that most targets were game servers and forums.
Subsequent analysis of leaked databases in [36] learned that targets
are predominantly residential links and gaming-related servers,
with only a handful of higher-profile targets, such as government,
media, and law enforcement websites. A finding later confirmed

in [7]. Observing ongoing DDoS attacks through honeypots in [42]
showed that victimization rates differ much per country. The U.S.
stands out (one-third of all victims), followed by China (14%), and
France (8.6%). Similar numbers were reported in [11] four years later.
Additionally, in [42], it was found that 79% of victims are targeted
just once. Analysis of the attacked ports showed a special interest in
gaming-related services, such as Xbox Live, Minecraft, and Steam.
A similar analysis performed in [34] observed that attacks targeted
at HTTP(S) are most prevalent for TCP, whereas the most attacked
ports for UDP are associated with various online multiplayer games
and Steam. As many websites are hosted on IP addresses operated
by large hosting companies, it was evinced that 64% of the .com,
.net and .org websites were hosted on IP addresses ever targeted
by DDoS attacks. Targeted networks were aggregated by their in-
frastructure in [40], which showed that content hosting networks
were attacked the most (37%), followed by access networks such
as ISPs (35%). Using the same honeypot technology as [42], [46]
published the most comprehensive work on booter victimization in
2016. It demonstrated that most attacks are directed towards users
in access networks and not at hosting or enterprise networks. The
number of victims in an ISP network is proportional to the number
of ISP customers, just as the victimization rate in a hosting network
is proportional to the number of hosted domains. For the identified
Web hosting victims, the authors discovered almost no high-profile
targets, whereas the largest victim group was again gaming-related
websites, mostly related to Minecraft. Noroozian et al. state that
“in the Minecraft community specifically, DDoS attacks seem to
be part of the culture” [46]. The authors speculate that attackers
and victims of booter services are geographically close, and the low
entry barrier of booter services allows victims to easily become
attackers themselves. In [30], it was concluded that victimization
has changed in 2021. The U.S. and China are still popular among
attackers. Yet, a disproportional share of attacks on South Africa,
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Table 2: Overview of DDoS attack characteristics. Grey-
colored rows are based on self-reported numbers; the others
are based on network measurements. Protocols in bold are
the most popular attack vectors. The average attack duration
is converted to seconds, and the number of attacks is per day.

Ref. Year UDP TCP Attacks Duration (s)

[35] 2013 DNS SYN - -
[55] 2015 UDP flood SYN - 260
[42] 2015 NTP, DNS - 10,235 62% ≤ 900
[36] 2016 SSDP, DNS SYN - 1,620
[46] 2016 DNS - 7,844 272 – 300
[34] 2017 NTP, DNS HTTP(S) 30,000 255 – 454
[60] 2017 NTP, DNS - 5,120 50% ≤ 658
[11] 2019 LDAP, NTP - 30,000 -
[41] 2019 NTP, Memcached - - -
[40] 2021 DNS, NTP - 809 ±360
[30] 2021 NTP, SSDP - 673 394

Poland, and Kuwait was found – 51% of all targeted IP addresses
had an associated domain name. There were also numerous DDoS
attacks on residential IP address space.

Execution – Attack. Earlier work has characterized booter DDoS
attacks by, for example, attack duration and used protocols. An
overview of such studies is presented in Table 2. It shows that most
research effort is put into analyzing UDP reflection or amplifica-
tion attacks. Only four studies [34–36, 55] report on the use of the
TCP protocol in DDoS attacks. Looking at the popularity of UDP
protocols for abuse, we observe a constant dominance of DNS and
NTP, even though their disclosure as DDoS amplification vectors
was made long ago [40]. [11] reported on the rise of LDAP as a
protocol in DDoS attacks, but this was never confirmed by later
research. [40] analyzed several other new attack vectors – such as
WS-Discovery, ARMS, and OpenVPN – and confirmed the active
abuse of these protocols for DDoS attacks, yet not at the scale of
traditional ones. Daily attack numbers are hard to grasp, as each
study covers a different dataset and measurement approach. Yet, the
numbers in Table 2 show a declining number of daily attacks while
attack duration remains relatively stable. Parallel attacks introduce
complexity in counting the number of attacks. For example, should
a booter customer that launches both an NTP and a DNS reflec-
tion attack toward a victim be counted as one or two attacks? [55]
noticed that 32% of attacks have been launched in parallel, which
means that new attacks against the same target are launched dur-
ing an ongoing attack. However, they also find that 38% of users
do not perform such attacks and perform just one attack per day
on average. Attack durations differ per protocol [30] and victim
type [46]. Both [60] and [46] noticed spikes in their attack dura-
tion measurements. They observed many attacks with a specific
duration of either 5, 10, 60, or 120 minutes, likely caused by booter
services offering exactly these amounts. Lastly, [30] discovered a
new adversary tactic – attack pulses – in which the attacker does
not launch its attack as a continuous flow but in powerful, periodic
pulses. This maximizes the attack power while minimizing the costs
for the attacker.

Monetization. As criminal entrepreneurs run booters, four studies
investigated their monetization strategy. Database analysis in [35]
learned that a total of 277 active users subscribed to TwBooter, to-
taling a profit of $7,727 a month. A similar conclusion was drawn
from analyzing VDoS databases in [7]. A median revenue stream of
$25,985 was reported, with new customers making up the largest
sum of revenue. Although the studied booter supported both Pay-
Pal and Bitcoin as payment methods, most profit was generated
through clients paying with PayPal – which ease-of-use stands
out compared to Bitcoin. The popularity of PayPal was also noted
in [36], which monitored the payment infrastructure of 23 booter
services. In confirmation with [7], only a small portion of booters ac-
cepted Bitcoin payments. [55] learned that most paying customers
paid only once to perform their attacks, and over 50% of customers
paid $5.00 or less for the booter’s services. Although booters of-
fer differently priced services, the cheapest services are the most
popular.

Interventions. As booter services impact the DDoS landscape, inter-
ventions either by law enforcement [11, 41] or as part of scientific
studies [36] have focused on disrupting their business. Both [36]
and [7] studied the effects of PayPal interventions on booter opera-
tions.While monitoring the payment infrastructure of 23 booter ser-
vices, [36] reported booter merchant accounts to PayPal. Through
this intervention, the average lifespan of such accounts dropped
from 8 to 3 days, and PayPal unavailability increased from 20% to
above 60% in the days after. Most booters eventually added alter-
native payment methods, such as Bitcoin. A similar analysis was
performed on VDoS in [7] and observed decreasing revenue as soon
as PayPal was removed as a payment method. This hampered sub-
scriber growth and eventually led to a decreasing user base. Only
11% of the existing customers switched to Bitcoin when PayPal was
not available anymore. The smaller user base also resulted in fewer
attacks being launched, decreasing by 31% in their analysis period.

The effects of booter takedowns by law enforcement are studied
by [41] and [11]. During the analysis in [41], an FBI-led operation
seized 15 booter services [65]. Those takedowns caused significant
reductions in DDoS traffic to DNS, NTP, and Memcached reflectors,
as observed from an IXP perspective, but no significant reduction in
traffic from those reflectors to targets. Kopp et al. note that “seizing
the domains of booter websites does not improve the situation for
DDoS victims, as the underlying infrastructure of reflectors remains
online and can be utilized by third parties without disruption” [41].
A longitudinal analysis of UDP amplification attacks in [11] revealed
that after each police intervention, the number of observed attacks
decreased significantly for a short period but kept increasing in the
long run. Search engine adverts (discouraging the use of booters)
and the closure of multiple booter websites had a longer-lasting
effect on the booter market than arrests.

Booter Takeaways. In contrast to other cybercrimes, much ground-
truth data (e.g., leaked databases) is available for research [7, 35, 36,
55], allowing for valuable insights into booter operations, attackers,
and targets. As a result, all components in the value chain have been
studied within the last 15 years. However, most measurements have
focused on the execution component. Reconnaissance has been
studied throughout the years, but although booters remain on the
radar for LEA worldwide [21], insights into its deployment and
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Figure 2: Phishing value chain with its components at the top and the required resources at the bottom.

monetization have not been gathered since 2016 and 2017, respec-
tively. Another unique aspect of this cybercrime is the number of
interventions that happened during measurements, which allowed
researchers to show that most LEA interventions seem to have
a short-term effect [11], whereas other interventions, such as on
payment infrastructure [7, 36], seem to have a longer-lasting effect.
Customers seem to be diverse, yet a large portion can be related
to online gaming. Analysis of groups of booter customers showed
great differences, both in terms of victim selection and OPSEC.
Attack characteristics across studies show that long-established at-
tack vectors (e.g., DNS or NTP amplification) remain popular while
others exist. Research into booter operations also introduces noise,
as scanning by security researchers is prevalent [42, 60]. This has to
be considered to avoid measurement biases, especially in the recon-
naissance phase [30]. Lastly, the popularity of analyzing the same
booter databases in [7, 36, 55] suggests that some measurements
are driven by data availability.

4 Phishing Measurements
Phishing is the nefarious practice of harvesting user credentials
through various means of deception. In our study, we specifically
include work on phishing used for gaining direct profits – e.g., ob-
taining bank credentials to steal funds. We are aware that phishing
can also be used to gain initial access to a (company) network, but
we do not include such use in our survey. Illustrated in Figure 2,
we present the components of the phishing value chain. Develop-
ment is typically served through a phishing kit – an off-the-shelf
package containing Web pages mimicking a company login page.
Occasionally, they feature a back-end panel that allows access to
the phished credentials. Deployment involves registering a domain
name and acquiring hosting facilities. During execution, victims
interact with the phishing website, followed by the monetization of
the phished credentials. We find 19 large-scale technical measure-
ments of phishing published between 2007 and 2022, which we list
in Table 3 and detail in the next paragraphs.

Datasets. A diverse set of data sources can be found in phishing
studies, as evident from the overview provided in Table 3. Most
studies gather a large body of phishing URLs or domains from a
database of known phishing pages to analyze afterward. Until 2019,
this source was predominantly PhishTank [52], a community-vetted
database of phishing URLs. Until 2019, 7 of the 11 measurements
relied on this source [13, 14, 43–45, 50, 63]. This shifted towards
other databases such as the APWG eCrime Exchange [3] and Open-
Phish [49] in the years that followed. From 2020 onward, combining
different data sources gained traction [6, 16, 38, 50]. The introduc-
tion and adoption of Certificate Transparency (CT) [28] in 2018 -
2019 opened up new methods to discover phishing domains and

was immediately put to use in several studies [5, 6, 38]. WHOIS
records in phishing research are mostly used to complement other
datasets [5, 16, 38, 44, 70]. In terms of data types, we observe a shift
from (passive) domain and URL-based measurements [43, 44, 47, 57]
towards active measurements using a crawler that inspects live
phishing pages [5, 6, 16, 38, 59, 69, 70].

Development – Phishing Kits. The development component of a
phishing attack is typically served through a phishing kit. The first
study on such kits by [13] showed that more than a third contained
obfuscated backdoors exfiltrating phished credentials to a third
party. This was quantified in [50] years later, with 5% of phishing
pages also disclosing credentials to third-party collectors. Addition-
ally, in [13], it was noted that all kits were written in PHP, likely
because of the easy deployment on (shared) hosting servers. This
was confirmed twice more, in 2017 by [62], and in 2021 by [5]. Most
kits impersonated one specific organization – mostly a U.S bank
or PayPal –, and email was found to be the most frequently used
method to deliver disclosed information. PayPal was also found to
be most mimicked by [31] in 2016 and by [50] in 2019. A similar
analysis as in [13] was performed years later in [5] by gathering
phishing kits from Telegram and open server directories on live
phishing pages. In contrast to [13], high utilization of multipanels
was observed in [5] – a type of kit that targets multiple organiza-
tions simultaneously – and they found many versions of the same
uAdmin phishing kit, which was the most deployed phishing kit
at the time. Like in [62], it was found that only a small number of
phishing kits are actively used by many different attackers. Email
was no longer used to deliver disclosed credentials, as most kits con-
tained a panel hosted on the same domain to access them instead.
Additionally, the use of decoy pages was discovered, enabling multi-
stage phishing attacks involving multiple brands in one campaign.
Phishing websites were grouped through vector clustering on the
DOM in [14], which allowed for the observation that attackers only
search for a new domain for their attack instead of modifying their
phishing pages. However, as pointed out by both [62] and [5], this
could result from the same phishing kit being used by many differ-
ent actors. Through an analysis of live phishing pages [59] report
on phishing kit capabilities. A third of pages logged keystrokes
and shared them with the attacker as soon as they were typed,
and almost half of the websites required users to disclose their
credentials in multipage Web forms, hereby confirming the find-
ings of [5]. Although modern phishing sites impersonate a certain
brand’s Web page, 42% of phishing pages are not direct clones of
the corresponding legitimate ones. This was also mentioned in [63]
four years earlier, which concluded that such evasions would ren-
der visual similarity detection ineffective. Finally, a new type of
phishing through man-in-the-middle (MITM) attacks was evinced
in [38], circumventing multi-factor protections.
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Table 3: Overview of large-scale phishing measurements. Measurements can be active (𝐴), passive (𝑃), or hybrid (𝐻 ), with a
worldwide (𝑊 ) or local (𝐿) focus.
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Moore et al. [45] 2007 𝐴 𝑊 ✓ 02/2007 – 04/2007
Cova et al. [13] 2008 𝑃 𝑊 04/2008 – 05/2008
McGrath et al. [44] 2008 𝐻 𝑊 2007 – 2008
Han et al. [31] 2016 𝑃 𝑊 09/2015 – 01/2016
Cui et al. [14] 2017 𝐴 𝑊 ✓ 01/2016 – 10/2016
Thomas et al. [62] 2017 𝑃 𝑊 03/2016 – 03/2017
Oest et al. [47] 2018 𝑃 𝑊 2016 – 2017
Le Page et al. [43] 2018 𝐻 𝑊 ✓ 01/2016 – 12/2017
Tian et al. [63] 2018 𝐻 𝑊 ✓ 04/2018
Peng et al. [50] 2019 𝐴 𝑊 ✓ 09/2018 – 03/2019
Bitaab et al. [6] 2020 𝐴 𝑊 ✓ 01/2020 – 05/2020
Oest et al. [48] 2020 𝐻 𝐿 10/2018 – 09/2019
Simpson et al. [57] 2020 𝑃 𝑊 2009 – 2019
Bijmans et al. [5] 2021 𝐴 𝐿 ✓ 09/2020 – 01/2021
Kondracki et al. [38] 2021 𝐴 𝑊 ✓ 03/2020 – 03/2021
Zhang et al. [69] 2021 𝐴 𝑊 ✓ 06/2018 – 11/2019
Drury et al. [16] 2022 𝐴 𝑊 ✓ 07/2021 – 02/2022
Subramani et al. [59] 2022 𝐴 𝑊 ✓ 03/2022 – 05/2022
Zhang et al. [70] 2022 𝐴 𝑊 ✓ 11/2020 – 07/2021

Development – Cloaking. To prevent phishing websites from being
detected, attackers deploy cloaking mechanisms to thwart secu-
rity researchers accessing their phishing websites. Here, the server
presents different content to scanners instead of regular visitors.
The first analysis of such mechanisms was in [62], which found that
many phishing kits deploy a htaccess policy or employ a block-
list to frustrate visits from cloud providers, anti-virus brands, and
anonymous proxies like Tor. A year later, 2,313 of such .htaccess
files were examined in [47] to discover that blockades based on
IP address, hostname, referrer, and User Agent are most common.
Most .htaccess files are constantly reused and not kept up to date
– as most of them were last modified over a year before their de-
ployment. 23% of all phishing websites were found to implement
client-side cloaking techniques in 2018 according to [69], which
grew up to 34% in 2019. The most common technique was the use of
pop-ups (content remains hidden until a button in a pop-up window
is clicked) and click-through interaction (content is shown when
a visitor clicks somewhere on the page). Follow-up work in [70]
showed that intentionally triggering server-side cloaking behavior
could be used as a method to detect phishing websites. Analysis of
live phishing kits revealed that 96% employed cloaking techniques
in 2022, and [38] showed 85% of MITM phishing kits did too.

Deployment. The deployment of phishing websites in the wild was
first studied in [45] by monitoring 1,685 phishing domains from
PhishTank [52]. They found an average uptime of 62 hours, with
a median of just 20 hours. Additional analysis of domains related
to the RockPhish gang revealed the use of fast-flux domains, which
resulted in a longer average uptime of 95 hours. As listed in Table 4,

this research inspired others to perform similar measurements of
phishing website life cycles.WHOIS records were used in [44] to
discover that most domains are used almost immediately after reg-
istration. Periodic DNS resolving of the examined domains revealed
that, on average, a phishing domain lasts just over three days, but
a third of all domains only 55 minutes. An estimated lifespan of
eight days for phishing kits installed in a honeypot was calculated
in [31]. Honeypot monitoring further revealed that attackers act
fast when installing and testing their kits. This was quantified
in [48], which found a one-hour window between the first attacker
tests and the first victim. Most URLs were hosted on paid domain
names, whereas only a very small portion used subdomains offered
by free hosting services. Two-thirds of distinct URLs were served
over HTTPS, but 86% of the compromised visitors visited over
HTTPS, meaning that the use of HTTPS proved more successful
than HTTP. A percentage that was much lower one year earlier,
when 34% of websites were served over HTTPS in [50]. Subsequent
studies leveraged the TLS certificates for HTTPS connections to
detect phishing websites in CT logs. In [6], a spike in newly issued
certificates for COVID-19-related domains during the pandemic
was observed, peaking at more than seven thousand per day. CT
logs also allowed for the identification of 1,363 domains targeted at
the customers of Dutch financial institutions in [5]. Further analy-
sis confirmed the one-hour testing window found in [48], as most
domains had a kit installed one hour after they first responded. A
surprising amount of these domains were hosted (73%) and regis-
tered (34%) through Namecheap. In the same year, [38] found most
MITM domains hosted at DigitalOcean – demonstrating the need
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for more demanding requirements (e.g., a VPS instead of shared
hosting) for such attacks. TLS certificates were not used for de-
tection in [16], but to timestamp phishing websites. They found
TLS certificates to be often requested close to the occurrence of a
phishing website on a blocklist – 27.6% was requested within 24
hours of inclusion. Date information included in file headers yielded
insights into the resource’s creation and indications of resource
sharing among phishing websites.

Deployment – URLs & Domains. Much research focused on URLs
and domain names used in phishing, which started relatively un-
structured. From [13], we learn that 63% of live phishing kits were
hosted on trustworthy domains with the targeted brand inserted
in the path, and 30% of phishing URLs had no clear relation with
the targeted brand. That phishing domains tend to be online for
shorter periods than benign ones was discovered in [44], whereas
their URLs are typically longer. Additionally, phishing domains
typically have fewer unique characters, and more than half of the
examined domains contain the targeted brand name. In 2007, the
first efforts were made to structure the analysis of phishing URLs.
A taxonomy defining four types was proposed in [27], only to be
used in [45]. It was later updated in [47] that proposed five types,
used in [5] and [48]. Phishing URLs contain either an IP address
as hostname and a deceptive path (Type I), a random domain and
a deceptive path (Type II), a long and deceptive subdomain (Type
III), a deceptive top-level domain (Type IV), or are unintelligible
(Type V). 61% Type V domains were found in [47], followed by
21% Type IV domains. Follow-up work in 2020 in [48] showed
fewer Type V domains, 29% Type IV domains, an increase in Type
II domains (35%), and 28% Type IV domains. Almost solely Type
IV domains (95%) were found in [5] by monitoring CT logs for
phishing domains. Half of the domains did not contain references
to the targeted brands, just deceptive keywords. The gTLDs .info
and .com were among the most popular ones, followed by cheap
TLDs such as .xyz. Similarly, [38] reported that combo-squatting
(Type IV) and target embedding (Type III) were most prevalent but
varied significantly per target for the MITM phishing websites. Ty-
posquatting – e.g., replacing one character of a target domain name
– was hardly employed. This deceptive method was studied in [63]
and [58]. [63] searched proactively for phishing domains by crafting
squatting domains and checking for their existence in DNS records.
Half of the registered domains were live during the crawling win-
dow, and 3% of domains redirected users to domain marketplaces.
Verification revealed that just 0.2% were phishing pages. However,
91.5% of these phishing pages remained undetected for at least a
month, which suggests that they are more challenging to detect.
A similar approach was followed in [58] by combining company
registrations with .com zone files. 95% of the studied companies
had at least one potential visual impersonation domain (VIDN), yet
only 7% had at least one registered misspelling during the ten-year
analysis period. Historical WHOIS records allowed for the cluster-
ing of VIDNs and showed that only a handful of companies register
VIDNs defensively.

Execution. Half of the examined works have studied the execution
of a phishing attack. Analyzing publicly available page logging on
phishing websites in [45] estimated that when a phishing website
was removed within one day of reporting, the average number of

Table 4: Phishing lifetime measurements.

Ref. Year Amount Type Uptime

[45] 2007 1,685 URLs 62h average, 20h median
[44] 2008 7,394 Domains 72h average, ±30% 55m
[31] 2016 474 Kits 192h
[63] 2018 1,741 Domains (sq.) 80% ≥ 1 month
[48] 2020 404,628 URLs 21h avarage
[5] 2021 1,288 Domains 45h average, 24h median
[38] 2021 1,220 Websites 40% ≥ 24h, 15% ≥ 480h

visitors disclosing their credentials was 18, with eight more for each
day thereafter. Thirteen years later, an acceleration of this process
was reported in [48], that found most visits take place in the nine
hours between the first victim visit and detection. During these
nine hours, phishing websites lure in 62% of their victims. In the
2007 analysis in [45], half of the responses entered were fake, and
many visits to the landing page of a phishing website were observed.
This was quantified in [31], that analyzed the visitors of the web-
sites installed in honeypots. Many visits originated from security
scanners. Just 9% of all real visitors (security scanners excluded)
disclosed any credentials. Crafted credentials were fed into 150 live
phishing websites in an experiment in [50] to examine their pro-
gression. Only seven leaked accounts received logins quickly after
disclosure. Some accounts received multiple attempts from differ-
ent IP addresses, probably the result of credentials being disclosed
to multiple attackers through backdoors in the phishing kit. The
longitudinal study of the underground ecosystem fueling credential
theft in [62] was in collaboration with Google. 3,785 credential
leak dumps were gathered by monitoring various online sources,
which were checked against Google’s user base. Over two million
vulnerable Google users could be tied back to deployed phishing
kits, 25% of them with a matching password. Examining the login
geolocation of Gmail accounts that were involved revealed that 42%
of them were last accessed in Nigeria. In [48], it was shown that the
most prevalent geolocations coincide with countries disproportion-
ately associated with cybercrime. This is in contrast to [31], that
compared the geolocation of victim IP addresses with the target
population of phishing kits and found that many received most of
their victims from a single country. This was later confirmed in [5]
by examining phishing kit installation times and their manuals.

The increased use of URL shorteners also allowed for a new
method of delivering phishing URLs. In 2008, their abuse was no-
ticed in [44], albeit not very large – only 217 cases. More than ten
years later, just 31 short URLs were discovered in the dataset of [50].
Many more were found in [43] that used URL shortening services
to compare the life cycle of phishing and malware attacks. Analysis
of bit.ly short URLs showed that phishing short URLs have a
high click-through rate but a short uptime and are most active 4
hours before being reported as malicious.

Monetization. Just one study examined the monetization of phished
credentials. [48] found that 7% of real visitors with an active ac-
count at the targeted organization suffered a fraudulent transaction,
on average, five days after being phished. Additionally, 63% of the
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Developers RAT stub Stolen information

Development Deployment Monetization
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Controller hosting Attacker

Controller domain Target Victim access

Figure 3: RAT value chain with its components at the top and the required resources at the bottom.

compromised accounts would later appear in a public dump, on av-
erage, almost a week later, suggesting that criminals first monetize
phished credentials themselves before selling them off.

Phishing Takeaways. From Table 3, we learn that the research focus
has shifted towards the left – from execution and deployment to-
wards the development component in the value chain. Yet, only one
study [48] yields insights into the monetization of phishing attacks.
As a result, insights into how criminals make a profit from phishing
attacks remain mostly anecdotal. Over time, more active measure-
ments involving a crawler have been deployed, in contrast to earlier
work that focused more on passive (domain) datasets. Consequently,
due to changing attacker TTP, analysis of live phishing Web pages
is increasingly included in research over time. The increased use of
HTTPS by phishers has made their pages more believable [48], at
the same time allowing for new possibilities to detect them through
Certificate Transparency logs by defenders [5, 38]. We observe a
similar pattern for the increased use of cloaking in phishing kits,
which researchers have exploited by designing techniques to use it
for detection [38, 70]. A closer look at the used data sources reveals
the prevalent use of some data sources, such as PhishTank or APWG
eCX, which could introduce biases [10]. For example, attacks mim-
icking PayPal are extensively studied, which raises the question of
generalizing these results [31, 50]. Only two studies scoped their
measurement to a company [48] or a country [5], while multiple
studies suggested the localized nature of phishing [5, 31]. Lastly,
just as with booter service measurements, extensive scanning from
the security industry [31, 48] hampers robust measurements.

5 RATs Measurements
A Remote Access Trojan (RAT) is a type of malware that allows
an attacker to take over a victim’s computer [24]. Typically, this
includes access to audio and video interfaces, as well as logging
of mouse movement and keyboard input. RATs require manual
interaction from an attacker and are not designed to execute and
exfiltrate automatically, unlike traditional malware [68]. This makes
RATs a preferred choice for targeted attacks [23, 24]. Monetary
value is created through victim extortion or reselling initial access.
A typical value chain for such an attack is depicted in Figure 3, in
which we identify four components. In development, cybercriminals
search for developers and software to achieve their remote access.
The required infrastructure to successfully operate the software is
set up during deployment. Next, in the execution, an attacker delivers
a stub, which can be controlled using a control panel or controller,
hosted at a domain and server under the attacker’s control. Lastly,
profits are made through the acquired access in the monetization
component. Although RATs have been around since 1999 [68], they
have not been extensively studied.We could identify five large-scale

technical measurements published between 2017 and 2022, which
we list in Table 5 and further detail in the following paragraphs.

Datasets. VirusTotal is the starting point for most RAT research.
Through the years, consecutive studies collected more samples
(stubs) for their analyses. First, [24] examined 19k samples in 2017,
then [53] with 27k samples in 2018 and [23] used 146k samples
in 2020. Only two studies did not use VirusTotal as a source for
measurements. Significant effort was spent in [68] to search un-
derground forums for RATs manually. In [25], malware domains
from the GT Malware Passive DNS feed were combined with au-
thoritative DNS data. Three studies employed Internet scanning
to discover RAT artifacts [23, 24, 53] and two [24, 53] designed
honeypots to study interactions. Three studies [23, 24, 53] focused
predominantly on two RAT families, namely DarkComet or njRAT.

Development. An overview of RAT characteristics in [68] comprises
static and dynamic analysis on 53 RATs. A stub was generated for
each RAT, and it was found that high-level programming languages
(such as C# and VB.NET) are the most popular, as they require only
a few or no runtime dependencies. 90% of these RAT stubs targeted
solely Windows computers. Additionally, analysis of both the stubs
and controller panels revealed that over 80% of the RATs were able
to log keystrokes, set up a remote shell, download and execute
files, and enable the camera. Oftentimes, these functionalities were
implemented similarly across different RATs. Both [24] and [23]
did not study the development of RATs, but through their analysis
of the deployment and execution of DarkComet, they did discover
several facts about its development. Analysis in [24] revealed that
DarkComet stubs contain a campaign ID to manage infections, a
password to encrypt communications, and a list of controller IP
addresses. Follow-up work in [23] detailed how to discover Dark-
Comet controllers and download their victim databases.

Deployment. Different approaches have been employed to gain in-
sights into RAT infrastructure. A live overview of DarkComet was
obtained in [24] by extracting controller domains and IPs from
stubs and through continuous Internet-wide scanning for specific
banner responses. 175 online controllers were found at any given
time (9,877 in total during an eight-month monitoring period). More
controller activity was observed on the weekends compared to the
rest of the week. Both [24] and [23] found Turkey and Russia to
be hosting many DarkComet controllers, whereas [53] reported on
the prevalence of North Africa, the Middle East, Brazil, and Rus-
sia as hosting locations. Many controller domains use a dynamic
DNS (DDNS) service to rapidly change IPs. A user types mapping
of these IPs suggests that roughly 90% of controllers are hosted
on residential IP networks, likely with limited OPSEC [24]. Two
strategies were deployed in [53] to examine RAT controller oper-
ations. Through RAT-Hole, a honeypot to mimic a RAT controller,
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Table 5: Overview of large-scale RAT measurements. Measurements can be active (𝐴), passive (𝑃 ), or both (hybrid, 𝐻 ).
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Farinholt et al. [24] 2017 19k 𝐻 ✓ 2016
Rezaeirad et al. [53] 2018 27k 𝐻 ✓ ✓ 2016 – 2017
Farinholt et al. [23] 2020 146k 𝐴 ✓ 2016 – 2019
Faulkenberry et al. [25] 2022 245k 𝑃 ✓ ✓ ✓ 2017 – 2021
Yang et al. [68] 2022 53 𝑃 ✓ ✓ ✓ 1999 – 2016

and RAT-Scan, to mimic a victim searching for its controller. The
latter periodically resolved discovered domains and IPs from sand-
box executions and identified 4,584 njRAT and 2,032 DarkComet
controller IPs within a seven-month measurement period. The use
of DDNS as discovered in [24] was leveraged in [53] to register
6,897 expired DDNS domains previously used by RAT controllers.
RAT-Hole revealed that the majority of traffic towards the honey-
pot originated from scanners and sandbox executions – a limited
number of connections arose from victims. Analysis of downloaded
DarkComet configurations in [23] discovered 3,518 IP addresses
used by 1,162 RAT controllers in a 213-day measurement period.
The average uptime of such controllers was 484 days, with some
being functional for over three years. A global infrastructure of
399K IPs in 151 countries spread over 202 malware families during a
four-year measurement period was observed in [25]. Various RATs
were observed in use in 2022, although DarkComet and njRAT
were the most prevalent. Additionally, much interest from scanners
soon after a domain is listed as malicious was observed, inflating
infection population counts if not properly filtered for.

Execution – Attackers. Monitoring attacker behavior in a controlled
environment (e.g., a sandbox) reveals common attacker actions on a
target machine. Executing 1,165 DarkComet samples in a honeypot
in [24] learned that operators commonly access the webcam (61%),
steal stored passwords (43%), or explore the victim’s file system
(40%). An average session lasted four minutes, 45% of the sessions
were motivated by access to a human user – e.g., for harassment
or extortion – and at least 58% of RAT operators were motivated
by access to user credentials. Analysis in [53] showed that 43% of
controller domains received only a single victim, 90% received at
most 20 victims, and just 5% received over 40 victims. This suggests
that some attackers widely distribute their malware, whereas others
operate more targeted. A similar disparity was reported in [23],
which found a median of two victims per controller, with ten out-
liers amassing over a thousand victims each. Lastly, [23] found that
only 16% of operators use a VPN to hide their tracks.

Execution – Victims. Two studies examined RAT victims. In [53] by
letting victims connect to expired DDNS domains and in [23] by
scrutinizing downloaded controller databases. Victim connections
in [53] showed that most victim IPs are static, and more than half
of them have a webcam, making them susceptible to extortion
via camera recordings. Infections last long, as 90 days after the

controller domain expiration and registration by the researchers,
40% of domains were still receiving victim connections. Almost
every country was home to RAT victims, with Brazil being the most
prevalent. Correlating the controller and victim locations revealed
that they are often located in the same country. This finding was
later confirmed in [23], which found that more than 74% of attackers
with limited victims are located in the same country as most of their
victims. Leveraging downloaded databases in [23] revealed a total
of 57,805 victims in a five-year measurement period. Several steps
were taken to validate this number and to allow for comparison
with [53], yielding an overestimation of the number of victims
by 40%. Lastly, DarkComet was found to have collected 79,142
keystrokes and recorded 60 hours of activity over 9.6 days for each
victim on average.

RATs Takeaways. Academic measurements focus predominantly on
the deployment and execution of RATs, as shown in Table 5. The
capabilities of stubs, attacker actions, and infrastructure have been
well studied, but how RATs end up at victims or how infections are
monetized remains unknown. The prevalent use of VirusTotal as a
source for RAT stubs stands out and could introduce a measurement
bias, as its database mostly depends on user submissions. This leads
to the question of whether the stubs uploaded to VirusTotal are, in
fact, a representative sample. Additionally, the discovered RAT char-
acteristics are primarily based on two RATs (DarkComet or njRAT),
whereas a great variety of RATs are listed in [25]. To what extent
the findings generalize to other types of RATs is unknown. Attacker
analysis distinguished two types of attackers: the ones operating on
a large scale and targeted attackers operating locally [23, 53], which
allows for more in-depth analyses of differences in TTP. Finally, just
as with booters and phishing, scanners deployed by the security
community make it hard to establish robust observations of victim
traffic [25, 53].

6 Measurement Characteristics
Before we report on the results of our workshop with LEAs to elicit
their assessment of various studies, we summarize the findings
from our survey. When scholars measure cybercrime, they mea-
sure mostly its deployment and execution, not the monetization
component in the value chain, as illustrated by Tables 1, 3, and 5.
Many measurements leverage the same datasets or methods, like
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the use of AmpPot in booter measurements [34, 42, 46], Phish-
Tank in phishing measurements [13, 14, 16, 38, 43–45, 50, 63], and
VirusTotal in RAT measurements [23, 24, 53]. The prevalent use of
such datasets could introduce measurement biases. For example, a
community-vetted database like PhishTank does not contain every
phishing URL but does include all known PayPal phishing URLs
due to their collaboration [10]. Which, consequently, results in an
overestimation of PayPal’s popularity as a target among phishers.
And, although differentiation in temporal and geographical charac-
teristics is mentioned in measurements of every type of cybercrime
in our research [5, 23, 46], just two of the 38 studies had their focus
adjusted to a specific geographical area or company. Internet-scale
measurements provide a nice panoramic view of the global cyber-
crime landscape. Yet, studies have found phishers operating in one
geographical or language area – often the same as theirs [5], gamers
launching attacks at their neighboring rivals through booter ser-
vices [46], and RAT operators targeting victims locally [53]. Such
localities can easily get lost in an analysis on an Internet scale,
where a geographical focus is absent. Therefore, the takeaways of
such analyses represent an average across countries, not within a
country, making them less actionable for LEAs operating within
local jurisdictions. From the attacker analyses across the examined
cybercrimes, we can differentiate two types of actors: cybercriminal
groups performing large-scale untargeted attacks – e.g., originating
from countries known for cybercrime [48, 62] – and individuals per-
forming small-scale attacks locally (e.g., many RAT operators with
few victims [53]). A clear differentiation between these attackers is
essential in measurements. Just as geographical diversity, including
both groups in one measurement, can result in senseless averages –
as these groups rely on very distinct TTP. Lastly, multiple studies
across the three cybercrimes mention the amount of scanning by
other researchers that hamper robust measurements [42, 48, 53],
which should be accounted for properly.

7 Measurements for Law Enforcement
As detailed in previous sections, scholars have spent significant
effort measuring cybercrime. However, little is known about what
kind of measurements (i.e., data, methods, and analyses) cater best
to LEA needs. Some papers specifically mention how their measure-
ments could assist LEAs in policing cybercrime [23, 45], but does
law enforcement agree? To answer our second research question,
we engagewith LEA professionals in the Netherlands during awork-
shop with two objectives. First, we want to elicit their assessment
of the added value of specific measurements to see which charac-
teristics align with LEA needs. Second, we wanted their insights
into what innovative measurements can cater to LEA needs. Dutch
LEAs have been involved in several high-profile cybercrime inter-
ventions, such as the takedown of QakBot [64], Webstresser [18],
and Bestmixer [20]. Such experiences make them a good partner
for this study.

Workshop approach. We invited a diverse group of seven LEA pro-
fessionals consisting of four participants from the Dutch National
Police (ranging from analysts to project managers – all in dedicated
cybercrime units), two from the Dutch Public Prosecution Service
tasked with cybercrime cases, and one from the cybercrime unit
of the Dutch Fiscal Information and Investigation Service (FIOD).

Table 6: Scores assigned by LEA participants, ranging from 1
(totally not agreed) to 7 (totally agreed) (𝑁 = 7).

Reference Understanding Connection Action

Bo
ot
er
s Santanna et al. [56] 4.0 2.2 2.8

Brunt et al. [7] 4.3 3.8 3.9
Kopp et al. [41] 4.8 4.0 3.8

Ph
is
h. Peng et al. [50] 4.0 2.5 3.1

Oest et al. [48] 5.0 3.3 3.1
Bijmans et al. [5] 5.0 4.3 4.1

RA
Ts

Farinholt et al. [24] 4.9 3.3 3.3
Rezaeirad et al. [53] 4.1 3.3 3.0
Farinholt et al. [23] 4.7 4.3 4.9

Their experience was evenly spread and ranged from one to 15+
years. All participants gave verbal informed consent to participate
in our study under the condition that their names or any other PII
would not be used in any publication. They also agreed to record
and transcribe the workshop. To collect their perspectives on what
makes a study more or less aligned with their needs, we present
them with specific studies rather than abstract overviews of a large
set of studies. Exposing them to all 38 studies would not be feasi-
ble; thus, we selected three studies with different characteristics
in terms of data, methods, and findings for each of the three crime
types – nine studies in total. In the workshop, we presented 100-
word summaries of each study. Each summary detailed the data
source(s), methods, and main findings. Participants were asked to
rate each study on three criteria, using seven-point Likert scales.
First, the participants were asked about understanding the phenom-
enon: To what extent does this paper add to your understanding of
the measured cybercrime? Second, about the connection to police
work: To what extent does this study connect to your daily work
as a law enforcement professional? And third, about the actionable
perspectives: To what extent do elements of this study offer clear
and actionable perspectives? Additionally, we asked participants to
reflect on the study in a five-minute discussion. This open-ended
approach allowed for a reflexive process of inductive reasoning to
discover the characteristics of studies that align with LEA needs.
One researcher distilled such characteristics from the transcrip-
tions and audio recordings, and the other researcher who attended
the workshop agreed with its findings. In the second part of the
workshop, we asked our participants how to advance cybercrime
measurements by bringing new measurement ideas forward in
a brainstorming session. To allow for fresh ideas, we structured
this around three different cybercrimes than the ones already dis-
cussed, namely ransomware, online stolen data markets (e.g., data
from phishing or data breaches), and bulletproof hosting (hosting
providers that do not comply with LEA inquiries when hosting
malicious content). For each of these crimes, the participants were
asked to write down ideas for new measurements on Post-its. These
Post-its were collected per cybercrime on a large sheet of paper.
After reading all the ideas, every participant was given 10 points per
cybercrime, which they were asked to divide. The highest-scoring
ideas were discussed to capture the rationale behind them. The
results of both workshop parts are detailed in the next sections.
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Booters. As shown in Table 6, all studies were rated moderately well
on contributing to a better understanding of the phenomenon. The
work in [56] was met with skepticism, and questions were raised
regarding the relevancy of this work, as it was published eight
years ago. Additionally, the finding that a third of all purchased
attacks at booters are not executed was deemed not interesting as
“criminals scamming criminals is not our priority”, according to
Participant 2. The responses to the measurements presented in [41]
were more positive. Ironically, multiple participants agreed with
Participant 3, who stated: “It is great to see how little effect these
police interventions have. This should be taken into account when
designing other interventions”. Participant 1 added that “taking
down booters is just a game of whack-a-mole, it’s better to aim
higher”. However, this person also added that “police actions are
also normative, especially with types of crime that are difficult
to control”, indicating that such actions send a message to other
criminals even though direct results are limited. This study inspired
Participant 5 to state that “it would be nice to collaborate with
academics whenever we act. They could measure before and after
our actions to analyze the effects.” Insights into monetizing booters
in [7] gave our participants concrete and actionable perspectives.
The popularity of a certain payment service provider can spark fu-
ture cooperation, especially when such a provider is willing to work
with law enforcement. According to Participant 4, this shows that
public-private partnerships to police cybercrime are effective, as
“profits diminished despite customers changing payment methods”
in [41].

Phishing. All presented studies were rated moderately well on con-
tributing to a better understanding of the phenomenon but differed
in being well-connected to police work and whether or not they
offered an action perspective, as shown in Table 6. This discrep-
ancy is well illustrated by the discussion that followed upon the
life cycle measurements in [48]. This paper illustrates the short life
cycle of phishing URLs, being online for only 21 hours on aver-
age. Participant 1 from the Dutch police said: “It is shocking to see
these short time frames, as we can never act in this time frame, it’s
simply too short.” The measurements in [48] and [5] strengthened
some participants in their beliefs that phishing can not be stopped
through criminal investigations alone, but also by taking preventive
actions or through public-private partnerships. Various participants
appreciated the local focus in [5] because its findings directly apply
to their work. Additionally, the “insights into what phishing kits
are popular could steer our investigations towards the developers
of the most popular kits.”, according to Participant 2. The methods
and results in [50] did not align well with police practice, according
to our participants. Purposely leaking credentials and observing
their evolution did not contribute to anything LEAs can act upon.
Despite an idea for a public-private partnership (“if PayPal is really
that prevalent, we should cooperate with them”, participant 5), it
offered no useful insights for criminal investigations.

RATs. All presented studies featured analyses of either one or two
different RATs, which made Participant 2 raise the question: “there

are hundreds of different RATs active at the moment, did the re-
searchers know how prevalent this RAT was?”. Besides this ques-
tion, all papers were rated moderately well regarding both phe-
nomenon understanding, as shown in Table 6, yet [23] scored sig-
nificantly better on actionable perspective. The geographic dis-
tributions of both attackers and defenders reported in [23] were
well-received: “It is always interesting to see the numbers. Such an
overview shows that victim notification is possible” (Participant
5), referring to the victim counts per country in [23]. Additionally,
the long RAT controller uptime finding showed that “there is input
for criminal investigations, because of the long uptimes. In the 400
days that some RATs remain active, we can easily do a full investi-
gation!” (Participant 3). Participant 4 from the FIOD noted that “we
often think about cybercrime on a global scale, this paper shows
that victim and perpetrator are much closer to each other, which
makes it more worthwhile to investigate”, referring to the fact that
prosecuting a Dutch perpetrator is much easier than a foreign one.
Additionally, the analysis of perpetrator OPSEC gave relevant hints
for LEA action. The low use of VPNs by RAT controllers could
be exploited for identification. The findings of [53] showed that
dependencies of malicious actors on legitimate services could be
exploited for law enforcement investigations or in public-private
partnerships. Regarding the popularity of one VPN provider, Partic-
ipant 1 stated that “the use of commercial products, like these VPN
services, makes them ideal targets for public-private partnerships.”

Advancing Measurements. For ransomware, participants wanted
to learn about money laundering within the ecosystem. Since the
victim payments are transacted in cryptocurrencies, what do crimi-
nals do next to convert their assets to fiat currencies? The second
most-voted measurement was related to victims, emphasizing both
geographical and sectoral analysis. Does ransomware tend to target
specific organizations, or is it mostly opportunistic, capitalizing on
initial access? Such insights could assist in designing preventive
measures. Exact profit calculations or the means of initial access
were less popular. As data breaches and stolen credentials enable
many different forms of cybercrime [61], our participants expressed
interest in learning more about the data types. Is every piece of
data equally valuable, or are some more interesting – and more
expensive – than others? And, to what extent does it influence
the price of stolen data? The total volume of leaked credentials
offered in the underground economy was less interesting to the
participants. To learn which hosting providers can be considered
bulletproof, our participants question the ratio of malicious and
benign content that would classify a provider as bulletproof. Ad-
ditionally, they are curious to know how such providers advertise
in the underground economy. Customers are interesting as well,
and our participants expressed the desire to understand both their
background and payment methods.

To summarize, the LEA participants valued scientific measurements,
as Participant 5 stated: “we fail in keeping a close eye on what sci-
ence does, we should hire more researchers that could introduce
these scientific insights into our daily work.” The high scores related
to the “understanding the phenomenon” column in Table 6 illustrate
this. However, the lower scores in the other two columns emphasize
that although scientific measurements can help to better understand
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cybercrime, they can not directly assist in combating it, as they
do not offer concrete action perspectives. The few higher-scoring
studies generated actionable perspectives related to geographical
differentiation [5, 23], development [5], monetization [7] or the
effects of interventions [7, 41]. Measurements of solely the deploy-
ment or execution components were less valued. Accurate numbers
related to their jurisdiction allow LEAs to act, monetization insights
allow for public-private partnerships with, for instance, payment
service providers, whereas development insights could steer crim-
inal investigations toward the developers of malicious software
instead of their many clients downstream. Findings originating
from these scientific measurements could be leveraged to set up
public-private partnerships with companies (ab)used by criminals.
Brainstorming on innovative measurements highlighted the wish
to gain predominantly insights into the monetization of cybercrime,
illustrated by the desire to know more about money laundering in
ransomware, stolen data price mechanics, and bulletproof hosting
advertising.

8 Discussion
In this section, we discuss the inherent limitations of our work and
mark interesting avenues for future work.

Limitations. We identify three limitations in our research that could
have influenced our findings: our selection of cybercrimes, paper
collection, and the recruitment of workshop participants. First, we
selected only three cybercrimes to survey the academic field. As
mentioned in § 2, we selected booter services, phishing, and RATs
based on three years of Europol reporting [19, 21, 22]. We general-
ize our conclusions for all cybercrime research based on our survey
of studies covering only these three cybercrimes, which could in-
troduce a bias. Given the large differences in value chains across
these cybercrimes, we, however, don’t think our conclusions would
be vastly different if we had selected other cybercrimes. Second,
although we took a systematic approach to survey past cybercrime
measurements, as elaborated upon in § 2, it is possible that we
have missed or incorrectly discarded studies as part of our selection
process. Lastly, the workshop with law enforcement professionals
included only a limited number of participants. Although these
participants came from a variety of agencies and had different roles,
the group could have been biased.

Future work. We envision three avenues for future work from the
results of this combined survey and user study. First, we encour-
age researchers to perform more large-scale measurement studies
with a sole focus on cybercrime measurements instead of creating
detection methodologies. Since one of the pillars of science is to
build on the shoulders of previous researchers, we promote research
that takes already published detection methodology from earlier
work to perform robust measurements of cybercrime. Second, in
performing such measurements, we argue that well-demarcated
studies in terms of jurisdiction, geography, or language could aid
in better connecting scientific research to police operations. We
acknowledge that such research requires good relations with local
law enforcement – which can be difficult to achieve – and that
such research is not appropriate at every university, nor approved
by every institutional research board. Finally, comparative studies

between the aforementioned demarcations have the potential to
demonstrate differences in actor TTP and in the law enforcement
efforts to police them. Such future work would help improve our
understanding of cybercrime across the globe and discover what
approaches work to combat cybercrime.

9 Conclusions
Combining our survey of large-scale technical measurements and
the workshop with LEA professionals allows us to answer our re-
search questions and find the nexus between cybercrime science
and policing. In short, we find a mismatch between LEA needs
and academic measurements. Most measurements focus on the
deployment and execution of cybercrime, whereas LEAs desire to
learn more about development and monetization. Although the
deployment and execution components are paramount to measure,
analyses on the source or how profits are made would also be bene-
ficial, especially for LEAs to build an intervention repertoire. They
provide clues that could bring investigators closer to the people
facilitating these types of cybercrime, allowing for proactive and
disruptive infrastructural policing with longer-lasting effects [12].
That is, monetization insights allow for public-private partnerships
with, for instance, payment service providers, whereas development
insights could steer criminal investigations toward the developers
of malicious software instead of their many clients downstream.
As noted in [14], taking down individual phishing websites is far
less efficient than policing phishing kit developers, which is what
LEAs – given their scarce resources – should focus on. Law enforce-
ment doesn’t prioritize investigations into hundreds of individual
phishing pages, but this changes as soon as all these websites can
be associated with one attacker [45]. To arrive at this conclusion,
one needs large-scale technical measurements – which academics
could design. Such measurements need a geographical focus, which
is essential to LEAs as they operate in conjunction with local juris-
dictions. Also, LEA interventions lean on attacker differentiation,
as policing individuals requires a different enforcement repertoire
than organized cybercriminal groups. Aligning academic and LEA
opportunities, considering all value chain components, actor differ-
entiation, and geographical diversity, augments the nexus between
large-scale technical measurements and cybercrime policing.
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