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Abstract 

Advance Persistent Threats (APTs) represent a cybersecurity concern for governments and 

corporations alike. Over the past two decades, modes of APT defense have progressed 

from firewalls to defense-in-depth to the cyber kill chain and zero trust. We examine the 

history and future of cyber defense through an analysis of four solutions to one game: the 

cybersecurity enforcement game. The solutions (Stackelberg leader-follower, Nash, 

maximin, and correlated equilibrium) involve different assumptions about the behavior of 

APTs and Targets and the information they possess about each other. Given APTs may 

adjust their behavior in response to a change in the behavior of Targets, and vice-versa, we 

show increasing the sophistication of cybersecurity defense need not increase the Target’s 

welfare.  
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1. Introduction 

Cybersecurity plays an increasing role in national security. Howard (2023) defines  

cybersecurity as reducing the probability of material impact to an individual or organization 

due to a cyber event. Of particular concern for the Cybersecurity and Infrastructure Security 

Agency and the MITRE ATT&CK framework is the behavior of Advanced Persistent Threats 

(APTs).1 APT is a term originally applied by security analyst Sean Carpenter at Sandia 

National Laboratories to China’s ‘Titan Rain’ cyber breach campaign, which affected target 

nations and private enterprises during 2003 – 2006. 

APTs are nation-state threat actors possessing resources and specialized skills to 

tailor methods for patiently probing specific targets for weaknesses; gain and maintain 

unauthorized access to systems to return at a later date; and compromise cryptographic 

protocols (Arce 2023). They are highly skilled and well-funded (possibly nation-sponsored) 

groups of cyber-attackers keen on long-term operational efforts and endowed with 

technological sophistication and R&D capabilities (Gilad, Pecht, and Tishler 2021). Stuxnet is 

an example of an APT-deployed virtual worm with an unprecedented four zero-day Windows 

exploits specifically designed to have physical consequences (Chen 2010). In addition, 

Stuxnet limited its rate of spread to maintain stealth. More recently, during 2024 into 2025 

the startling sophistication of the TTPs involved in the Salt Typhoon and Flax Typhoon 

(HAFNIUM) cyber campaigns facilitated access to the U.S. Treasury, and telecoms and 

critical infrastructure in Australia, Japan, Vietnam, and the U.S, among myriad other targets. 

Owing to the Internet being an “almost unique” computer system due to “varying 

relationships of collaboration and competition with each other,” Papadimitriou (2001) 

endorses a game-theoretic approach to understanding the Internet. In the same year, 

Anderson (2001) makes an argument for using game theory in the context of information 

security, with Anderson and Moore (2006) claiming, “the tools of game theory and 

microeconomic theory are becoming just as important as the mathematics of cryptography 

to the security engineer.” These claims have proved to be prescient; presently upwards of 40 

reviews exist on the application of game theory to cybersecurity (Arce 2023). Recent 

 
1 ATT&CK is an acronym for Adversarial Tactics, Techniques, & Common Knowledge. 
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examples are Fedele and Roner (2022) and Collins, Xu, and Brown (2025). 

Cybersecurity defense has evolved from firewalls to defense-in-depth to kill chains 

and zero trust. What is the effect of the change in defensive stance on the welfare of its 

practitioners? While each step in the evolution involves more sophistication on the part of 

the Target, malicious actors as well exhibit increasingly sophisticated tactics, techniques, 

and procedures (TTPs). It is especially true for APTs.  

At their core, cybersecurity breaches by APTs are a form of illegal behavior. The 

economic theory of deterrence of illegal behavior begins with Becker (1965). Yet a valid 

critique of Becker is it is a nonstrategic analysis where the probability of being caught is 

exogenous. A game-theoretic approach instead endogenizes this probability. Within the 

context of APT deterrence the Target’s monitoring TTPs and frequency of monitoring 

determine the probability of catching the APT. This in turn determines an APT’s TTPs, 

including when to further penetrate the Target versus playing a waiting game. Similarly, the 

APT’s actions influence the Target, and so on. Such a situation is known as an inspection 

game (Tsebelis, 1990; Fudenberg and Tirole 1992), thereby recognizing the interdependence 

between Target and APT. 2 As it is the building block for intrusion detection systems, Liu, 

Comanciu, and Man (2006), Chen and Leneutre (2009), Otrok et al. (2009), Gao et al. (2012), 

Gianini et al. (2013), and Rass and Zhu (2016), among others, introduce and examine 

cybersecurity versions of the inspection game. 

Modeling cybersecurity attack and defense as an inspection game facilitates our  

analysis of the evolution of Target TTPs from firewalls to defense-in-depth to cyber kill chains 

and beyond. As originally conceived, firewalls are a form of perimeter cyber defense 

employed as the control point on the boundary between an organization’s digital assets and 

the Internet. Firewalls inspect incoming and outgoing traffic based on IP protocols, ports, 

and packet filters. Firewalls lose their effectiveness if not continuously maintained and if 

more than one choke point needs monitoring. Over time, reliance on firewalls progressed to 

defense-in-depth and then cyber kill chains and zero trust. 

A key insight stemming from this paper is each of the Target TTPs can be modeled as a 

 
2 This game is also known as an enforcement game. It is not to be confused with Dresher’s (1962) sampling 
inspection game. 
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change in the information structure of the inspection game. Notably, a change in information 

structure manifests itself in terms of the solution concept applied to the same underlying 

cybersecurity inspection game. For example, firewalls correspond to a leader-follower 

structure, whereby the APT observes the Target’s TTPs and acts accordingly. The associated 

equilibrium concept is Stackelberg equilibrium. In contradistinction, defense-in-depth 

corresponds to Nash play. 

Liu, Comanciu, and Man (2006), Rass and Zhu (2016), and Huang and Zhu (2020) 

examine multistage games representing the Target’s network, where each stage is a local 

inspection game between Target and APT. We employ a non-zero-sum version of Rass and 

Zhu (2016), where informational differences lead to different outcomes depending on the 

class of defense employed by the Target (firewall, defense-in-depth, kill chain, zero trust). 

The solutions (leader-follower, Nash, maximin, correlated) facilitate a comparison of how 

the Target fares across defensive classes. In this way, we examine the history of 

cybersecurity defense and potential future developments using four solutions to the 

cybersecurity inspection game. Hence, part of the contribution of the paper is the 

conceptualization of firewall defense, the cyber kill chain, and zero trust as solutions to the 

cybersecurity inspection game, thereby facilitating comparisons of how the Target fares 

under these three defensive classes. We also compare these three to Rass and Zhu (2016)’s 

conceptualization of Nash equilibrium as defense-in-depth. 

How the Target fares across different defensive classes is an open question because 

as the Target changes its defense, APTs’ TTPs change, and vice-versa. From a strategic 

perspective, defense-in-depth may result in a fallacy of composition against an ATP rather 

than generating synergy. Multiple layers of defense may increase the attack surface. 

Moreover, Wolff (2016) observes that encountering a strong overlapping defense may signal 

to an ATP that the Target is worthwhile. That is, the sophistication of defense may attract 

APTs. Hence the need for deception as part of defense-in-depth. 

We characterize the similarities and differences of the four defensive stances using 

two criteria. The first is strategy equivalence, pertaining to the probability of monitoring at  

each level of the network. The second is payoff equivalence, measuring the Target’s payoff at  

each level of the network. Our findings are as follows. The (probabilistic) level of Target 
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monitoring in the cybersecurity inspection game is the same when the Target acts as a 

Stackelberg leader versus Nash play. Yet the Target is better off under Nash play than as a 

Stackelberg leader. The two are Target strategy equivalent, but payoff non-equivalent. The 

difference has to do with the APT’s information and its ability to react. An APT can act as a 

Stackelberg follower when it knows the Target’s defense strategy, as is the case with 

defensive modes such as firewalls (Cavusoglu, Srinivasan, and Yue 2008). Kerckhoffs’ (1883) 

Principle in cryptography – a cryptosystem must remain secure even if everything but the 

secret key is public knowledge, including the algorithm – is another example of creating a 

leader-follower environment (Collins, Xu, and Brown 2025). By contrast, defense-in-depth 

eliminates this advantage and induces Nash play. Consequently, the APT’s second-mover 

advantage is eliminated, and this benefits the Target. As such, it is not so much the amount 

of monitoring that matters but the information the APT has about the monitoring.  

These equivalences or lack thereof are reversed when applying the cyber kill chain to 

the cybersecurity inspection game. As the cyber kill chain informs the Target about APT TTPs, 

both the Target and APT are better informed than in Nash play. The result is a maximin level 

of monitoring by the Target. This is Target strategy non-equivalence. Yet the increase in 

monitoring does not commensurately raise the Target’s payoff. Instead, the Target does no 

better than under defense-in-depth, i.e., payoff equivalence. Effectively, the APT response to 

the cyber kill chain offsets the increased monitoring. APTs become more aggressive when 

facing the kill chain. APTs penetrate the next level of the network more often because, by the 

kill chain the Target knows the ATP’s TTPs at the ATP’s current level in the network, making 

waiting at a level riskier than under firewalls or defense-in-depth. 

Payoff equivalence begs the question of whether this is as good as it gets for the 

Target? In investigating this question, we consider correlated strategies and correlated 

equilibrium. One rationale for this is correlated strategies inform players on a need-to-know 

basis, just as the principle of least privilege in zero trust is a need-to-know approach to 

information access. We show correlation can lead to a higher likelihood of the Target’s most-

preferred outcome in the cybersecurity inspection game as compared to Nash or 

Stackelberg play. At the same time, correlation cannot eliminate the persistent property that 

the Target’s least-preferred outcome is more likely to occur than its most preferred outcome, 
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consistent with cybersecurity folk wisdom of attacker advantage. It is also consistent with 

the emerging viewpoint given in Arce (2020) and Shapiro (2023) that technical solutions such 

as firewalls, defense-in-depth, the cyber kill chain, and zero trust, may never be enough. 

Indeed, we characterize  the limit of technical solutions for the cyber enforcement game in 

terms of the probability of the Target’s most preferred outcome versus the probability of the 

APT’s most preferred outcome. 

 

2. Related Literature 

In considering the history and future of cybersecurity defense, we begin with and then move 

beyond the common assumption that the Target acts as a Stackelberg leader. That is, the 

APT observes the Target’s strategy and optimizes by finding its best reply to the Target 

strategy. The Target in turn optimizes given the APT’s best replies to the Target’s strategy. An 

example of a Stackelberg information structure is when Targets reveal their investments in 

firewalls, authentication systems, and monitoring and inspection procedures (Cavusoglu, 

Raghunathan, and Yue 2008). 

By contrast, defense-in-depth involves redundant TTPs, such as access controls, 

integrity shells, online backups, virus monitors, virus traps, deception, etc. (Cohen 1992). 

Defense-in-depth provides sufficient redundancy to withstand new attack mechanisms, 

and, when properly integrated, results in synergy in the form of increased protection (Cohen 

1992). In particular, when overlapping controls are orthogonal to each other the weakness of 

some controls can be mitigated by the strengths of others (Tirenin and Faatz 1999). 

Recognizing the added coverage against known and unknown APT TTP’s, Rass and 

Zhu (2016) characterize the outcome of defense-in-depth in terms of the Nash equilibrium of 

a zero-sum cybersecurity inspection game in strategic form, implying Target and APT have 

imperfect information about each other’s TTPs. Liu, Comanciu, and Man (2006) and Huang 

and Zhu (2020) similarly use a variation on Nash equilibrium – Bayes-Nash equilibrium – to 

analyze defense-in-depth under conditions of incomplete information. Their informational 

comparative static is different than ours in they introduce Target uncertainty about whether a 

user is legitimate or an APT; and APT uncertainty about whether the Target is sophisticated 

(practices defensive deception) or not (called naïve).  
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In the kill chain model of cybersecurity, intrusions are not considered singular events, 

but rather phased progressions required to accomplish the APT’s goal (Hutchins, Cloppert, 

and Amit 2011). Achieving that goal requires successfully completing seven distinct phases 

of APT activity: (i) reconnaissance, (ii) weaponization, (iii) delivery, (iv) exploitation, (v) 

installation, (vi) command and control (C2), and (vii) actions on objectives. These phases in 

turn define the cyber kill chain. Furthermore, any repetition of TTPs within a level of the 

network is a liability for the APT.  

On a practical basis, MITRE’s ATT&CK framework documents the known TTPs for each 

state of the kill chain for a given APT. In documenting an APT’s specific implementation 

procedures used to deploy tactics, such intelligence, “is no longer ephemeral, is tied to 

known adversarial group behavior, and is conducive to designing impactful 

countermeasures” (Howard 2023). Indeed, the HAFNIUM campaigns exemplify the need for 

comprehensive threat intelligence to understand and counteract APT activities. From a 

theoretical perspective, the upshot is the cyber kill chain allows the Target to neutralize the 

ATP’s TTPs. That is, the Target must do at least as well as its lower bound (maximin) payoff, 

thereby making the Target’s payoff independent of the ATP’s TTPs because the TTPs are 

known to the Target. This criterion is particularly appropriate for high-risk environments. 

Although derived independently from Hutchins, Cloppert, and Amit (2011), Forrester 

Research’s zero trust model of cybersecurity begins with the same premise – assume the 

adversary is already within the network. Consequently, the network itself cannot be trusted. 

Zero trust rests on the following three principles: (i) ensure all resources are accessed 

securely regardless of location. Security principles must apply equally within and outside 

the network; (ii) adopt a least-privilege strategy and strictly enforce access control. Treat all 

information on a need-to-know basis; (iii) inspect and log all external and internal traffic 

(Kindervag 2010). We therefore explore the correlated equilibrium of the cybersecurity 

inspection game because correlated equilibrium as well limits information on a need-to-

know basis. Finally, while the cyber kill chain and zero trust were conceptualized over a 

decade ago, implementation of these concepts at scale is currently a work in progress with 

neither as ubiquitous as firewalls nor defense-in- depth. They are part of cybersecurity’s 

future, as is machine learning, which we address in the conclusion. 
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3. The Cybersecurity Inspection Game 

Rass and Zhu (2016) consider defense against an APT as a sequence of zero-sum inspection 

games, 𝐺𝐺𝐾𝐾 ,𝐺𝐺𝐾𝐾−1, … ,𝐺𝐺1, where the subscript refers to the APT’s current level within the 

Target’s network, and at level 𝑘𝑘 + 1 the APT has the strategy of penetrating the next level, 𝑃𝑃𝑘𝑘, 

or waiting at the current level, 𝑊𝑊𝑘𝑘+1. The topology of the network is acyclic, implying state 

𝑘𝑘 + 1 must be penetrated prior to 𝑘𝑘. The value of state 𝑘𝑘 is 𝑆𝑆𝑘𝑘 and 𝑆𝑆0 is the APT’s ultimate 

objective, with node/state 𝑘𝑘 separated from 𝑆𝑆0 by 𝑘𝑘 edges. The value of a state strictly 

increases as the APT approaches 𝑆𝑆0 within the network:  𝑆𝑆0 > 𝑆𝑆1 > ⋯ > 𝑆𝑆𝐾𝐾 ≥ 0.  Hence, in 

game 𝐺𝐺𝑘𝑘+1, 𝑆𝑆𝑘𝑘 is the value of the next state/level of the network to be penetrated. 

At 𝐺𝐺𝑘𝑘+1, the strategy of penetrating the next level with value 𝑆𝑆𝑘𝑘, is specified as 𝑃𝑃𝑘𝑘.  

Strategy 𝑃𝑃𝑘𝑘 costs the APT 𝜋𝜋𝑘𝑘 > 0. Alternatively, the APT can wait at 𝐺𝐺𝑘𝑘+1, which is strategy  

𝑊𝑊𝑘𝑘+1. Strategy 𝑊𝑊𝑘𝑘+1 costs 𝜔𝜔𝑘𝑘+1 > 0. The potentiality that the APT may wait at level 𝑘𝑘 + 1, rather 

than attempt to penetrate level 𝑘𝑘, is consistent with the definitions of APT given in the 

introduction. Cost 𝜔𝜔𝑘𝑘+1 is consistent with the property that waiting at a level is a liability for the 

APT. The Target has two strategies at each 𝐺𝐺𝑘𝑘+1: monitor for penetration at level 𝑘𝑘 (𝑀𝑀𝑘𝑘) or not 

(𝑁𝑁𝑘𝑘). Monitoring leads to the probability an APT is detected penetrating state 𝑘𝑘. Rass and Zhu 

(2016) instead assume the probabilities are parameters whose values differ with the state (𝑘𝑘).  

The game we analyze deviates from Rass and Zhu (2016) in two ways. First, the 

probability an APT penetrating state 𝑘𝑘 is detected equals the probability the Target monitors 

state 𝑘𝑘, consistent with the standard approach in inspection games (Tsebelis, 1990; 

Fudenberg and Tirole, 1992). Hence, the probability of detection is now determined 

endogenously as an equilibrium value that is a function of the primitives of the game, 

whereas it is an exogenous parameter in Becker (1965), Chen and Leneutre (2009), and Rass 

and Zhu (2016). Second, Rass and Zhu (2016) consider the APT’s payoff only and assume the 

game is zero-sum. We as well assume the payoffs are zero-sum in state values 𝑆𝑆𝑘𝑘 and 𝑆𝑆𝑘𝑘+1, 

reflecting whether the APT successfully penetrates the state in question or not. The 

difference is the cost of a strategy for the Target need not be a benefit to the APT and the cost 

of a strategy for the ATP need not be a benefit to the Target. In this way, in addition to the 

APT’s costs of penetrating and waiting, 𝜋𝜋𝑘𝑘 and 𝜔𝜔𝑘𝑘+1, the Target also has a cost of monitoring, 

𝑐𝑐𝑘𝑘 > 0. At each stage the game is no longer zero-sum, consistent with Chen and Leneutre 
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(2009) and Gianini et al. (2013). We do, however, maintain Rass and Zhu’s (2016) network 

structure in that the counterpart strategy to 𝑃𝑃𝑘𝑘 is not the strategy of not attacking – as is the 

case in Chen and Leneutre (2009) and Gianini et al. (2013) – with an associated payoff of 

zero. Instead, waiting at previously penetrated level 𝑘𝑘 + 1,𝑊𝑊𝑘𝑘+1, nets a gain for successfully 

penetrating 𝑘𝑘 + 1 minus the liability for waiting at 𝑘𝑘 + 1. 

Each stage of the cybersecurity inspection game is represented in strategic form by 

the game box in Figure 1. 

 
Figure 1: Representative Stage  𝑮𝑮𝒌𝒌+𝟏𝟏 of the Cybersecurity Inspection Game 

 
↓Target/APT→ 𝑃𝑃𝑘𝑘 𝑊𝑊𝑘𝑘+1 

𝑀𝑀𝑘𝑘 𝑆𝑆𝑘𝑘 − 𝑐𝑐𝑘𝑘, −𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘 −𝑆𝑆𝑘𝑘+1 − 𝑐𝑐𝑘𝑘, 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1 
𝑁𝑁𝑘𝑘 −𝑆𝑆𝑘𝑘, 𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘 −𝑆𝑆𝑘𝑘+1, 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1 

 
The payoffs at the (𝑁𝑁𝑘𝑘,𝑊𝑊𝑘𝑘+1) outcome represent the status quo. The APT has successfully 

penetrated level 𝑘𝑘 + 1 of the network, a necessary condition to penetrate level 𝑘𝑘. Hence, the 

payoffs are zero-sum in 𝑆𝑆𝑘𝑘+1 with the APT also incurring its waiting cost, 𝜔𝜔𝑘𝑘+1. At (𝑁𝑁𝑘𝑘,𝑃𝑃𝑘𝑘) the 

APT successfully penetrates level 𝑘𝑘. The payoffs are zero-sum in 𝑆𝑆𝑘𝑘 with the APT incurring its 

penetration cost, 𝜋𝜋𝑘𝑘. At (𝑀𝑀𝑘𝑘,𝑃𝑃𝑘𝑘) the Target successfully deters the APT’s attempt at 

penetrating level 𝑘𝑘. The payoffs are zero-sum in 𝑆𝑆𝑘𝑘, with the Target incurring its monitoring 

cost and the APT its penetration cost. Outcome (𝑃𝑃𝑘𝑘,𝑊𝑊𝑘𝑘+1) is a variation on the status quo at 

(𝑁𝑁𝑘𝑘,𝑊𝑊𝑘𝑘+1), where the Target is additionally incurring its cost for monitoring at level 𝑘𝑘. 

The relative costs and benefits in the payoffs follow the standard assumptions for 

inspection games: (i) 𝑆𝑆𝑘𝑘 − 𝑐𝑐𝑘𝑘 > 0; (ii) 𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘 > 0; (iii) 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1 > 0; (iv) 𝜋𝜋𝑘𝑘 > 𝜔𝜔𝑘𝑘+1; and  

(v) 𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘 > 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1. Assumption (iv) corresponds to the intuition that it is more costly 

to penetrate the next level of the network rather than wait at the current level. Assumption 

(iv) makes it clear that, if the Target is not monitoring the next level, it is rational for the APT to 

penetrate the next level. 

  Given these benefits and costs, the game has a clockwise sequence of best replies. 

Specifically, if the Target monitors, the APT’s best reply is to wait; if the APT waits, the Target’s 

best reply is not monitor (thereby avoiding the cost of monitoring); if the Target does not 

monitor, the APT’s best reply is to penetrate; and, finally, if the APT is penetrating, the Target’s 
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best reply is monitoring.  

This implies each stage has no pure strategy Nash equilibrium. At each stage the 

Target’s local  strategy (probability) of monitoring is 𝜆𝜆𝑀𝑀 ∈ [0,1] and that for not monitoring is 

𝜆𝜆𝑁𝑁 ∈ [0,1], where 𝜆𝜆𝑀𝑀 + 𝜆𝜆𝑁𝑁 = 1. 3 [For simplicity, subscript 𝑘𝑘 is suppressed.] Similarly, the 

APT’s probability of penetrating is 𝜆𝜆𝑃𝑃 ∈ [0,1] and that for waiting is 𝜆𝜆𝑊𝑊 ∈ [0,1], where 𝜆𝜆𝑃𝑃 +

𝜆𝜆𝑊𝑊 = 1. [Again, we suppress subscripts 𝑘𝑘 and 𝑘𝑘 + 1.] The expected payoffs for the target, 

𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀, 𝜆𝜆𝑃𝑃], and APT, 𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀, 𝜆𝜆𝑃𝑃], at each stage are 

 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀, 𝜆𝜆𝑃𝑃] = [𝑆𝑆𝑘𝑘 − 𝑐𝑐𝑘𝑘]𝜆𝜆𝑀𝑀𝜆𝜆𝑃𝑃 + [−𝑆𝑆𝑘𝑘+1 − 𝑐𝑐𝑘𝑘]𝜆𝜆𝑀𝑀𝜆𝜆𝑊𝑊 + [−𝑆𝑆𝑘𝑘]𝜆𝜆𝑁𝑁𝜆𝜆𝑃𝑃 + [−𝑆𝑆𝑘𝑘+1]𝜆𝜆𝑁𝑁𝜆𝜆𝑊𝑊 

which simplifies to 

 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀, 𝜆𝜆𝑃𝑃] = 2𝑆𝑆𝑘𝑘𝜆𝜆𝑀𝑀𝜆𝜆𝑃𝑃 − 𝑐𝑐𝑘𝑘𝜆𝜆𝑀𝑀 − 𝑆𝑆𝑘𝑘𝜆𝜆𝑃𝑃 − 𝑆𝑆𝑘𝑘+1(1 − 𝜆𝜆𝑃𝑃)    (1) 

and,  

 𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀, 𝜆𝜆𝑃𝑃] = 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1 + [(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)]𝜆𝜆𝑃𝑃 − 2𝑆𝑆𝑘𝑘𝜆𝜆𝑀𝑀𝜆𝜆𝑃𝑃 (2) 

 
Taken together, the sequence of games, 𝐺𝐺𝐾𝐾,𝐺𝐺𝐾𝐾−1, … ,𝐺𝐺1, constitutes an extensive form 

game. Consistent with the definition of strategies in extensive form games, ex ante each 

player specifies a (local) strategy for each 𝐺𝐺𝑘𝑘. The difference between our specification of 

strategies and payoffs and Chen and Leneutre (2009) is their strategies are 𝐾𝐾-tuples of 

probability distributions where the add-up condition is across all stages, e.g., 𝜆𝜆𝑃𝑃0 +  𝜆𝜆𝑃𝑃1 +

⋯+  𝜆𝜆𝑃𝑃𝐾𝐾−1 ≤  λ � ≤ 1 for the APT, and each player maximizes the sum of their payoffs over all 

stages. Our use of local strategies instead captures equilibrium behavior at each stage. 

 
Result 1: the Nash equilibrium of each stage of the cybersecurity inspection game is 

 𝜆𝜆𝑀𝑀∗ = (𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)
2𝑆𝑆𝑘𝑘

; 𝜆𝜆𝑃𝑃∗ = 𝑐𝑐𝑘𝑘 
2𝑆𝑆𝑘𝑘

      (3) 

Proof: all proofs of results and characterizations are in the appendix. 

 
At this point we present the Nash equilibrium for baseline purposes. Discussion of 

when to expect the Nash equilibrium, and its characterization, occurs in Section 5. We now 

turn to the evolution of cybersecurity defense. 

 
3 Using local strategies recognizes the multistage nature of the game. By contrast, a mixed strategy for this 
game is a probability distribution over every possible 𝐾𝐾-tuple of pure strategies, one for each stage.  
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4. When the APT has an Informational Advantage 

A common assumption in the analysis of cybersecurity games is the attacker – here, the APT 

– has an informational advantage in it observes the Target’s defensive strategy. Given the 

Target’s strategy, the APT selects its best reply. This is a leader-follower framework where the 

Target is the leader, the APT is the follower, and the solution concept is Stackelberg 

equilibrium. To be clear, the definition of Stackelberg equilibrium employed is: 

A Stackelberg equilibrium is a strategy profile in which the players select 
strategies in a given order and each player’s strategy is a best response to the 
fixed strategies of the players preceding him … Such an equilibrium would not 
generally be Nash or [subgame] perfect (Rasmusen 2007). 

 
In a Stackelberg equilibrium the Target solves the following optimization problem at 

each stage: 

max
𝜆𝜆𝑀𝑀

E𝑇𝑇[𝜆𝜆𝑀𝑀, 𝑏𝑏𝑏𝑏𝐴𝐴(𝜆𝜆𝑀𝑀)] 

where 𝑏𝑏𝑏𝑏𝐴𝐴(𝜆𝜆𝑀𝑀) ≡ APT’s best reply correspondence (set valued function), and 𝜆𝜆𝑃𝑃𝐹𝐹  denotes the 

APT-as-follower’s best reply probability of penetrating, 𝑃𝑃𝑘𝑘, given the Target-as-leader’s 

probability of monitoring, 𝜆𝜆𝑀𝑀𝐿𝐿 .  

The APT’s best reply correspondence may identify a nonsingular set of best replies to 

a strategy by the Target. Two conventions exist for breaking the ‘tie.’ One is Strong 

Stackelberg equilibrium where where the Target commits to the leader strategy and the APT 

selects 𝜆𝜆𝑃𝑃 from its best replies to maximize the Targets’ payoff. As the APT and Target’s 

payoffs are zero sum in 𝑆𝑆𝑘𝑘 and 𝑆𝑆𝑘𝑘+1 the Strong Stackelberg convention is not in the APT’s 

interest. Another convention is Weak Stackelberg equilibrium,  where where the Target 

commits to the leader strategy and the APT selects 𝜆𝜆𝑃𝑃 from its best replies to mimimize the 

Targets’ payoff. Such an APT is known as ‘Byzantine’ (Aiyer et al. 2005; Moscribroda, Schmid, 

and Wattenhofer 2006), which is a common assumption in cybersecurity. That is, among its 

best replies the APT selects the 𝜆𝜆𝑃𝑃𝐹𝐹  minimizing the Target’s payoff.  
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Result 2: the Weak Stackelberg equilibrium with Target as leader and APT as (Byzantine) 

follower is 

 𝜆𝜆𝑀𝑀𝐿𝐿 = (𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)
2𝑆𝑆𝑘𝑘

(= 𝜆𝜆𝑀𝑀∗ ); 𝜆𝜆𝑃𝑃𝐹𝐹 = 1.     (4) 

 
This equilibrium has the following characterization: 

• The probability the Target monitors is the same for Stackelberg leadership and Nash 

equilibrium: 𝜆𝜆𝑀𝑀𝐿𝐿 = 𝜆𝜆𝑀𝑀∗ . 

• The Target’s expected payoff is 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀𝐿𝐿 , 𝜆𝜆𝑃𝑃𝐹𝐹] = (2𝑆𝑆𝑘𝑘−𝑐𝑐𝑘𝑘)[(𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]−2𝑆𝑆𝑘𝑘
2

2𝑆𝑆𝑘𝑘
.  

In the next section we discuss these properties relative to the Nash equilibrium. 

 

5. Defense-in-Depth 

Defense-in-Depth refers to a multilayered system of redundant TTPs. In this section we 

analyze defense-in-depth relative to the situation it is designed to improve upon – firewall 

defense as Stackelberg leadership on the part of the Target. Specifically, we examine 

whether defense-in-depth is a welfare improvement. The question is open because, from a 

game-theoretic perspective, when the Target’s or APT’s information changes, or when their 

strategy changes, it may very well imply their counterpart’s strategy changes. 

The resulting outcome is the Nash equilibrium given by equation (3) in Result 1. As 

such, defense-in-depth has the following characteristics: 

• Again, the probability the Target monitors is the same for both Stackelberg leadership, 

where the APT knows the Target’s strategy; and the Nash equilibrium, where the APT has 

imperfect information about the Target’s strategy: 𝜆𝜆𝑀𝑀𝐿𝐿 = 𝜆𝜆𝑀𝑀∗ . We call this Target strategy 

equivalence. 

• The probability of monitoring state/level 𝑘𝑘 (and, hence, detection) increases with the 

value of that state, 𝜕𝜕𝜆𝜆𝑃𝑃
∗

𝜕𝜕𝑆𝑆𝑘𝑘
= 𝜕𝜕𝜆𝜆𝑃𝑃

𝐿𝐿

𝜕𝜕𝑆𝑆𝑘𝑘
= 𝑆𝑆𝑘𝑘+1+(𝜋𝜋𝑘𝑘−𝜔𝜔𝑘𝑘+1)

𝑆𝑆𝑘𝑘
2 > 0.4 Furthermore, this increase is an 

increasing function of the value of the prior state, 𝑆𝑆𝑘𝑘+1. 

 
4 Note this has nothing to with the assumption 𝑆𝑆0 > 𝑆𝑆1 > ⋯ > 𝑆𝑆𝐾𝐾 ≥ 0.  The characterization that holds by this 
assumption is the probability of monitoring in state 𝑘𝑘 is larger than for state 𝑘𝑘 + 1. 
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Hence, rather than assuming a parametrized value of detecting increases with the value of 

the state, we establish the endogenous probability of monitoring increases with the value of 

the state. 

• From equations (1) and (3), the Target’s expected payoff is 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀∗ , 𝜆𝜆𝑃𝑃∗ ] = 𝑐𝑐𝑘𝑘𝑆𝑆𝑘𝑘+1−𝑐𝑐𝑘𝑘𝑆𝑆𝑘𝑘−2𝑆𝑆𝑘𝑘+1𝑆𝑆𝑘𝑘
2𝑆𝑆𝑘𝑘

. 

• Defense-in-depth is an improvement over Stackelberg leadership, 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀∗ , 𝜆𝜆𝑃𝑃∗ ] > 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀𝐿𝐿 , 𝜆𝜆𝑃𝑃𝐹𝐹]. 

That is, when the APT has the information to act as a Stackelberg follower, it has a second-

mover advantage relative to the Target-as-leader. This advantage decreases the Target’s 

payoff relative to the Nash equilibrium. We call this Target payoff non-equivalence. 

This final characterization captures rammifications of the informational structure implied by a  

cybersecurity defense. Even with an identical level of monitoring, defense-in-depth does better 

because it changes the informational structure of the cybersecurity inspection game from 

Stackelberg leadership to Nash play. It is not just monitoring that matters but the informational 

context in which monitoring takes place. 

 

6. Kill Chain Defense 

The intent of Hutchins, Cloppert, and Amit’s (2011) concept of the cyber kill chain is to turn 

the table on APTs by using strategies tailored to neutralize the ATP’s TTPs. By the minimax 

theorem, max
𝜆𝜆𝑀𝑀

min
𝜆𝜆𝑃𝑃

𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀, 𝜆𝜆𝑃𝑃] ≤ min
𝜆𝜆𝑃𝑃

max
𝜆𝜆𝑀𝑀

𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀, 𝜆𝜆𝑃𝑃]. 5  Hence, the lowest payoff a Byzantine 

APT can hold the Target’s payoff to is maximin value, max
𝜆𝜆𝑀𝑀
𝑘𝑘

min
𝜆𝜆𝑃𝑃

𝐸𝐸[𝜆𝜆𝑀𝑀, 𝜆𝜆𝑃𝑃], where 𝜆𝜆𝑀𝑀𝑘𝑘  is the 

Target’s kill chain strategy. Kill chain strategies begin with the premise the APT is already in 

the Target’s network. By understanding an APT’s TTPs the maximin strategy makes the 

Target’s payoff independent of the ATP’s TTPs, thereby neutralizing them. The maximin 

approach is particularly useful in high-risk environments where the Target needs to ensure a 

baseline level of security. Targets can use this strategy to mitigate the impact of APTs and 

reduce the likelihood of successful attacks. 

 

 
5 Solving min

𝜆𝜆𝑃𝑃
max
𝜆𝜆𝑀𝑀

𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀, 𝜆𝜆𝑃𝑃] results in a strategy for the APT but not the Target. Furthermore, the Breton, Alj and 

Haurie (1988) procedure for building a strategy applies to maximin and not minimax. 
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Result 3: given a Byzantine APT, the Target’s kill chain (maximin) strategy is 

𝜆𝜆𝑀𝑀𝑘𝑘 = 𝑆𝑆𝑘𝑘−𝑆𝑆𝑘𝑘−1
2𝑆𝑆𝑘𝑘

          (5) 

 
The Target’s maximin payoff is a lower bound achievable by neutralizing the APT’s 

TTPs. The Target can get a higher payoff depending upon what the APT does. As is always the 

case, the maximim solution only identifies the strategy for the maximizer; here, the Target. 

Yet the cyber kill chain situation requires the identification of the APT’s strategy as well. Once 

again, we build the APT’s strategy via the three-step procedure in Breton, Alj and Haurie 

(1988) used to prove Result 2 in the appendix. 

The kill chain solution has the following characteristics: 

• The associated strategy combination is �𝜆𝜆𝑀𝑀𝑘𝑘 , 𝜆𝜆𝑃𝑃𝑘𝑘� = �𝑆𝑆𝑘𝑘−𝑆𝑆𝑘𝑘−1
2𝑆𝑆𝑘𝑘

, [(𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]
2𝑆𝑆𝑘𝑘

�. 

• Under the kill chain defense, the probability of monitoring increases with the value of the 

state, 𝜕𝜕𝜆𝜆𝑃𝑃
𝑘𝑘

𝜕𝜕𝑆𝑆𝑘𝑘
= 𝑆𝑆𝑘𝑘−1

2𝑆𝑆𝑘𝑘
2 > 0. Once again, this rate of increase is increasing in the value of the 

prior state, 𝑆𝑆𝑘𝑘−1.  

• The Target monitors more than under defense-in-depth: 𝜆𝜆𝑀𝑀𝑘𝑘 > 𝜆𝜆𝑀𝑀∗ ; i.e., Target strategy non-

equivalence. Consequently, as the Target is already monitoring more, the rate of increase 

of monitoring as a function of the value of the state is less than under defense-in-depth: 

𝜕𝜕𝜆𝜆𝑀𝑀
∗

𝜕𝜕𝑆𝑆𝑘𝑘
> 𝜕𝜕𝜆𝜆𝑀𝑀

𝑘𝑘

𝜕𝜕𝑆𝑆𝑘𝑘
> 0. 

• Even though the Target monitors more under the kill chain defense the Target does no 

better than under defense-in-depth: 𝐸𝐸𝑇𝑇�𝜆𝜆𝑀𝑀𝑘𝑘 ,𝜆𝜆𝑃𝑃𝑘𝑘� = 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀∗ , 𝜆𝜆𝑃𝑃∗ ]; i.e., payoff equivalence.  

• Given 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀∗ , 𝜆𝜆𝑃𝑃∗ ] > 𝐸𝐸𝑇𝑇�𝜆𝜆𝑀𝑀𝐿𝐿 ,𝜆𝜆𝑃𝑃ℓ �, it also holds that 𝐸𝐸𝑇𝑇�𝜆𝜆𝑀𝑀𝑘𝑘 , 𝜆𝜆𝑃𝑃𝑘𝑘� > 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀𝐿𝐿 , 𝜆𝜆𝑃𝑃𝐹𝐹]. The Target 

equally prefers both defense-in-depth and the cyber kill chain over firewalls. 

 
What explains the payoff equivalence of kill chain versus defense-in-depth? The 

Target monitors more under the kill chain strategy than under defense-in-depth. More 

monitoring implies the Target incurs monitoring cost 𝑐𝑐𝑘𝑘 more often. Furthermore, the APT’s 

strategy differs as well.6 This is the nature and value of game-theoretic analysis. When one 

 
6 The APT penetrates more if [(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)] >  𝑐𝑐𝑘𝑘 and less if the inequality is reversed.  
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player changes its strategy, the other player(s) may change their strategy as well. Indeed, 

Wolff (2016) identifies cases where an increase in the sophistication of a Target’s defense 

attracts APT interest because a sophisticated defense belies something worth protecting. 

Payoff equivalence is also a one-size-does-not-fit-all result in that Targets in high-risk 

environments will likely go the kill chain route, owing to its baseline level of maximin security, 

with others equally served by defense-in-depth.7 

 

8. Improving the Situation 

Thus far we consider three types of solutions corresponding to three models of cybersecurity 

defense: (Stackelberg) leader-follower, corresponding to firewalls; Nash equilibrium, 

corresponding to defense-in-depth; and maximin, corresponding to the cyber kill chain. In 

this section we consider a different noncooperative approach in the form of correlated 

strategies and correlated equilibrium.  

Under local strategies the probability of each player’s action is independent of the 

other players. Hence, the probability the (𝑀𝑀𝑘𝑘,𝑃𝑃𝑘𝑘) outcome occurs is 𝜆𝜆𝑀𝑀 ∙ 𝜆𝜆𝑃𝑃, where 

𝜆𝜆𝑀𝑀, 𝜆𝜆𝑁𝑁 ,𝜆𝜆𝑃𝑃, 𝜆𝜆𝑊𝑊 ∈ [0,1],  and 𝜆𝜆𝑀𝑀 + 𝜆𝜆𝑁𝑁 = 1,  𝜆𝜆𝑃𝑃 + 𝜆𝜆𝑊𝑊 = 1. By contrast, when strategies are 

correlated the probability distribution is on joint strategies, one for each player, 

𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑀𝑀𝑊𝑊 ,𝜌𝜌𝑁𝑁𝑃𝑃,𝜌𝜌𝑁𝑁𝑊𝑊 ∈ [0,1], and 𝜌𝜌𝑀𝑀𝑃𝑃 + 𝜌𝜌𝑀𝑀𝑊𝑊 + 𝜌𝜌𝑁𝑁𝑃𝑃 + 𝜌𝜌𝑁𝑁𝑊𝑊 = 1. 

The associated equilibrium concept – correlated equilibrium – is based on giving 

players information on a need-to-know basis. In particular, the players know the distribution, 

𝜌𝜌 = (𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑀𝑀𝑊𝑊, 𝜌𝜌𝑁𝑁𝑃𝑃,𝜌𝜌𝑁𝑁𝑊𝑊). In addition, for any joint strategy outcome realized under 𝜌𝜌, each 

player only knows their component of the realization. For example, if 𝜌𝜌 results in (𝑀𝑀𝑘𝑘,𝑃𝑃𝑘𝑘), 

the Target only knows 𝑀𝑀𝑘𝑘 resulted from 𝜌𝜌 and the APT only knows 𝑃𝑃𝑘𝑘 resulted from 𝜌𝜌. Dodis 

and Rabin (2007) call the need-to-know property of the realization of 𝜌𝜌 privacy preservation. 

In a correlated equilibrium, 𝜌𝜌 provides the incentive for each player to follow 𝜌𝜌’s 

realization, assuming the other player does as well. In terms of each player’s (conditional) 

expected payoffs, 𝜌𝜌 satisfies the following set of incentive compatibility constraints: 

𝐸𝐸𝑇𝑇[𝑀𝑀𝑘𝑘|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑀𝑀𝑊𝑊] ≥ 𝐸𝐸𝑇𝑇[𝑁𝑁𝑘𝑘|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑀𝑀𝑊𝑊] and 𝐸𝐸𝑇𝑇[𝑁𝑁𝑘𝑘|𝜌𝜌𝑁𝑁𝑃𝑃,𝜌𝜌𝑁𝑁𝑊𝑊] ≥ 𝐸𝐸𝑇𝑇[𝑀𝑀𝑘𝑘|𝜌𝜌𝑁𝑁𝑃𝑃,𝜌𝜌𝑁𝑁𝑊𝑊] (6) 

 
7 Gilad and Asher Tishler (2024) derive a one-size-does-not-fit-all result for a different cybersecurity game. 
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for the Target, and, for the APT, 

𝐸𝐸𝐴𝐴[𝑃𝑃𝑘𝑘|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑁𝑁𝑃𝑃] ≥ 𝐸𝐸𝐴𝐴[𝑊𝑊𝑘𝑘+1|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑁𝑁𝑃𝑃] and 𝐸𝐸𝐴𝐴[𝑊𝑊𝑘𝑘+1|𝜌𝜌𝑀𝑀𝑊𝑊, 𝜌𝜌𝑁𝑁𝑊𝑊] ≥ 𝐸𝐸𝐴𝐴[𝑃𝑃𝑘𝑘|𝜌𝜌𝑀𝑀𝑊𝑊, 𝜌𝜌𝑁𝑁𝑊𝑊] (7) 

As an example, if 𝑀𝑀𝑘𝑘 is the realization for the Target, 𝐸𝐸𝑇𝑇[𝑀𝑀𝑘𝑘|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑀𝑀𝑊𝑊] ≥

𝐸𝐸𝑇𝑇[𝑁𝑁𝑘𝑘|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑀𝑀𝑊𝑊] implies  

[𝑆𝑆𝑘𝑘 − 𝑐𝑐𝑘𝑘]𝜌𝜌𝑀𝑀𝑃𝑃 + [−𝑆𝑆𝑘𝑘+1 − 𝑐𝑐𝑘𝑘]𝜌𝜌𝑀𝑀𝑊𝑊�����������������������
Target′s expected payoff for following realization 𝑀𝑀

given APT follows its realization (𝑃𝑃 𝑜𝑜𝑜𝑜 𝑊𝑊).

≥ [−𝑆𝑆𝑘𝑘]𝜌𝜌𝑀𝑀𝑃𝑃 + [−𝑆𝑆𝑘𝑘+1]𝜌𝜌𝑀𝑀𝑊𝑊�����������������
Target′s expected payoff for 
deviating to 𝑁𝑁 instead of 𝑀𝑀.

 

 
From the Target’s perspective, its payoff is positive at (𝑀𝑀𝑘𝑘,𝑃𝑃𝑘𝑘) and is negative 

everywhere else. Hence, the Target is interested in the correlated equilibrium where 

𝜌𝜌𝑀𝑀𝑊𝑊 ,𝜌𝜌𝑁𝑁𝑃𝑃, and 𝜌𝜌𝑁𝑁𝑊𝑊 are at their lower bounds, given by equilibrium constraints (6) and (7). 

 
Result 4: the correlated equilibrium setting 𝜌𝜌𝑀𝑀𝑊𝑊 ,𝜌𝜌𝑁𝑁𝑃𝑃, and 𝜌𝜌𝑁𝑁𝑊𝑊 at their lower bounds 

generates the following probability for the (𝑀𝑀𝑘𝑘,𝑃𝑃𝑘𝑘) outcome 

 𝜌𝜌𝑀𝑀𝑃𝑃 = 𝑐𝑐𝑘𝑘[(𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘−𝜔𝜔𝑘𝑘+1)]
2𝑆𝑆𝑘𝑘{[(𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘−𝜔𝜔)]+[(𝑆𝑆𝑘𝑘+𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘−𝜔𝜔𝑘𝑘+1)]}     (8) 

 
This equilibrium is of interest to the Target because 

• Correlation can improve the likelihood of the Target’s preferred outcome: 𝜌𝜌𝑀𝑀𝑃𝑃 > 𝜆𝜆𝑀𝑀∗ ∙ 𝜆𝜆𝑃𝑃∗ . 

On the other hand, particularly disconcerting is the following property of this equilibrium, 

and, indeed, of any correlated or Nash equilibrium for the game: 

• The (𝑁𝑁𝑘𝑘,𝑃𝑃𝑘𝑘) outcome is more likely than (𝑀𝑀𝑘𝑘,𝑃𝑃𝑘𝑘): 𝜌𝜌𝑁𝑁𝑃𝑃 > 𝜌𝜌𝑀𝑀𝑃𝑃. 

This inequality arises from the constraint 𝐸𝐸𝐴𝐴[𝑃𝑃𝑘𝑘|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑁𝑁𝑃𝑃] ≥ 𝐸𝐸𝐴𝐴[𝑊𝑊𝑘𝑘+1|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑁𝑁𝑃𝑃]. As all Nash 

equilibria can be replicated by correlated equilibria, but not vice-versa, it is the property of 

any Nash equilibrium for the game as well.8 In other words, the APT’s preferred outcome 

occurs more frequently than the Target’s preferred outcome. Indeed, accepting the idea the 

Target is fighting a losing battle is part of the cybersecurity folk wisdom of attacker advantage 

and is the rationale for zero-trust cybersecurity policies (Kindervag 2010). The argument for 

zero trust occurs within the context of assessing prior technical (coding) solutions to the 

cybersecurity problem, such as firewalls and defense-in-depth. The idea there may be “no 

 
8 Trivially, given the independence of the Nash local strategies, 𝜌𝜌𝑀𝑀𝑃𝑃 = 𝜆𝜆𝑀𝑀∗ ∙ 𝜆𝜆𝑃𝑃∗ , 𝜌𝜌𝑀𝑀𝑊𝑊 = 𝜆𝜆𝑀𝑀∗ ∙ 𝜆𝜆𝑊𝑊∗ , 𝜌𝜌𝑁𝑁𝑃𝑃 = 𝜆𝜆𝑁𝑁∗ ∙ 𝜆𝜆𝑃𝑃∗ , 
𝜌𝜌𝑁𝑁𝑊𝑊 = 𝜆𝜆𝑁𝑁∗ ∙ 𝜆𝜆𝑊𝑊 ∗  is a correlated equilibrium. 
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technical solution” to a social problem – dating to Hardin (1968) – also applies to 

cybersecurity (Arce 2020). It is similar to Shapiro’s (2023) concept of “solutionism,” which is 

the flawed argument that cybersecurity is primarily a technical problem requiring an 

engineering solution. Instead, Shapiro (2023) asserts cybersecurity is a human problem 

requiring understanding of human behavior and Arce (2020) proves it for the case of Internet 

platforms. As such, this section finishes with a discussion of how correlation has the flavor 

of a nontechnical solution. 

Correlated equilibrium is an example of an ‘as if’ equilibrium. Other examples of ‘as if’ 

equilibria include the biological refinement of Nash equilibrium for symmetric two-player 

games known as evolutionary stable strategies (ESS), which Maynard Smith and Price (1973) 

formulate as a static characterization of a dynamic evolutionary process.9 ESS was later 

shown to characterize the outcomes of the frequency-dependent replicator dynamic in 

biology, thereby validating the ‘as if’ reasoning of Maynard Smith and Price. Closer to the 

current analysis is the use of 𝜀𝜀-Nash equilibrium to characterize outcomes ‘as if’ players are 

computationally limited (Kol and Naor 2008).10 Here, we relate correlated equilibrium to zero 

trust via the following ‘as if’ reasoning. The need-to-know (privacy-preserving) realization of a 

correlated equilibrium strategy is ‘as if’ this need-to-know property translates into the 

principle of least privilege under zero trust, where all information and access is treated on a 

need-to-know basis.  

Another ‘as if’ characterization also lends itself to considering correlated equilibrium 

as a potential nontechnical solution for the cybersecurity inspection game. Specifically, if 

the game is both (i) extended by an arbitrary but finite number of rounds of cheap talk 

(unmediated payoff-irrelevant preplay communication), and (ii) players have limited 

computational capacity, then Dodis et al. (2000) and Urbano and Vila (2002) show such 

preplay communication can implement any correlated equilibrium distribution among the 

players themselves without need for third party mediation.  

 
9 Using the symbol 𝜎𝜎 to denote a mixed strategy, a symmetric equilibrium (𝜎𝜎∗,𝜎𝜎∗) is an ESS if (i) 𝐸𝐸[𝜎𝜎∗,𝜎𝜎∗] ≥
𝐸𝐸[𝜎𝜎,𝜎𝜎∗]∀𝜎𝜎 ≠ 𝜎𝜎∗; and (ii) if E[𝜎𝜎∗,𝜎𝜎∗] = 𝐸𝐸[𝜎𝜎,𝜎𝜎∗], then 𝐸𝐸[𝜎𝜎∗,𝜎𝜎] ≥ 𝐸𝐸[𝜎𝜎,𝜎𝜎]. 
10 Using 𝜎𝜎 again to denote a mixed strategy, joint strategy (𝜎𝜎𝑖𝑖∗,𝜎𝜎−𝑖𝑖∗ ) is an 𝜀𝜀-Nash equilibrium if no player can 
unilaterally deviate from (𝜎𝜎𝑖𝑖∗,𝜎𝜎−𝑖𝑖∗ ) and increase its payoff by an amount greater than 𝜀𝜀 > 0: 𝐸𝐸𝑖𝑖[𝜎𝜎𝑖𝑖∗,𝜎𝜎−𝑖𝑖∗ ] ≥
𝐸𝐸𝑖𝑖[𝜎𝜎𝑖𝑖 ,𝜎𝜎−𝑖𝑖∗ ] − 𝜀𝜀 ∀𝜎𝜎𝑖𝑖 ≠ 𝜎𝜎𝑖𝑖∗,∀𝑖𝑖. Typically, 𝜀𝜀 is a function of the polynomial time in which 𝜎𝜎𝑖𝑖∗ and 𝜎𝜎𝑖𝑖 can be calculated. 
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An example of costless preplay communication is the recommendation that zero-

trust adopters announce the principle of least privilege as a means to change behaviors 

(Kindervag 2010). Hence, zero trust has a nontechnical component. Another example is the 

naming and shaming form of APT deterrence. Naming and shaming places significant 

importance on attribution, a problem that is not intractable (U.S. Department of Defense 

2011; Baker 2012; Gilad, Pecht, and Tishler 2021). Indeed, naming and shaming is rarely a 

one round process as incentives exist for academics and commercial security providers to 

establish reputations by independently verifying attribution (Arce 2023). For example, the 

U.S. government often passes technical evidence to the nongovernment Cyber Threat 

Alliance (CTA), who confirm attribution using their own commercial product lines.  

Consider the naming and shaming of the HAFNIUM group behind the Salt Typhoon 

and Flax Typhoon campaigns mentioned in the introduction. It is an example of extended 

cheap talk because such naming and shaming is unlikely to result in prison terms for 

members of HAFNIUM. Yet the logic for naming and shaming is clear through the ‘as if’ 

interpretation of correlated equilibrium and Result 4. 

 

8. Conclusion 

The evolution of cybersecurity defense is towards more sophistication. Yet whether more  

necessarily leads to better outcomes for the Target is subject to debate (Wolff 2015). Using 

one game – the cybersecurity enforcement (intrusion detection) game of a Target versus an 

APT – we consider four approaches to cybersecurity: firewalls, defense-in-depth, cyber kill 

chain, and zero trust. We evaluate these alternatives via four solutions to the game: 

Stackelberg leader-follower, Nash, maximin, and correlation. We compare the outcomes 

using two criteria: the Target’s probability of monitoring and detection, and the Target’s 

payoff. Our findings reveal more monitoring need not be better because the APT reacts to the 

Target defense and, together, the Target and APT strategies determine the Target’s payoff. 

One indicator of the value of theoretical modeling is whether some results initially 

appear to be counterintuitive, but the theory lends itself to explaining why this is not the case 

(Sandler 2001). That is, theory sheds new light on the situation. For example, the Target’s  

Stackelberg and Nash solutions are strategically equivalent but payoff non-equivalent. The 
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Target monitors with the same probability as a Stackelberg leader or as a Nash player, but 

earns a higher payoff under Nash play, which we equate to defense-in-depth. The same 

monitoring probability for the Target leads to a payoff improvement for the Target under 

defense-in-depth because the APT has less idea of what the Target is doing and reacts 

accordingly. By contrast, defense-in-depth was initially promoted to create synergy among 

orthogonal TTPs with individual strengths and weaknesses. We do not dispute the potential 

synergistic properties of defense-in-depth but do suggest the associated change in 

information structure has a previously unrecognized role to play.  

Hence, it is in the Target’s interest to recognize scenarios where its TTPs result in the 

Target-as-leader and ATP-as follower, calling for actions to reduce ATPs’ second-mover 

advantage. For example, in the future machine learning is expected to figure prominently in 

cybersecurity. Most machine learning methods do not recognize the existence of active 

adversarial opponents. Evasive ATP TTPs in the wild need not follow the same patterns as 

training data. Even adversarial machine learning methods are likely to commit the Target to a 

strategy before the adversary takes its actions (Zhou, Kantarcioglu, and Xi 2021). Hence, in 

either case the information structure allows the APT to act as a Stackelberg follower with the 

Target-as-leader committing to its machine learning model.11 

Both defense-in-depth and the cyber kill chain increase the Target’s payoff relative to 

firewalls. Yet in comparing the two we do not find more sophistication is better. Strategic non-

equivalence (more monitoring in the kill chain) leads to payoff equivalence. An unanticipated 

effect of the kill chain is it spurs the APT to be more aggressive. Consequently, the kill chain is 

more appropriate for high-risk environments demanding a baseline level of security 

independent of the APT’s actions. Targets should balance the implementation of advanced 

cybersecurity measures with practical considerations, ensuring they do not inadvertently 

increase the attack surface or attract more aggressive APTs. 

Overall, the message is the TTPs of new cybersecurity modes have informational 

implications that need to be recognized and understood. Hence, when a Target introduces 

new TTPs, they should ask  themselves whether these TTPs make the Target or APT a Nash 

 
11 The Target has a remaining problem in much of the output from machine learning is unexplainable owing to 
the impenetrability of the underlying logic for generating weights. 
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player, a Stackelberg leader or follower, a Maximiner, or none of the above? That is, new TTPs 

may generate a new information structure. For example, defense-in-depth requires 

implementing strategies accounting for imperfect information. Zero trust requires measures 

to ensure a need-to-know information structure. By focusing on the informational 

implications, Targets can enhance their cybersecurity posture and better defend against 

APTs and other sophisticated threats. 

Another related question is, how does costless communication – rather than costly 

signals – manifest itself and matter for the success of new Target TTPs? Within this context, 

we provide a rationale for informing users of the principle of least privilege when 

implementing zero trust, and naming and shaming in cybersecurity defense. Other ways to 

change the information structure and forms of costless-communication-as-cyber-defense 

are topics for future research.  
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Appendix: Proofs. 
 
Nash Equilibrium: proof of Result 1 in section 3 and its accompanying characterization in 
section 5. 
 
Nash equilibrium in probabilistic strategies satisfies the indifference property of equating 
the expected payoff of the pure strategies the other player plays with positive probability. For 
the Target’s local strategy, this implies 𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀,𝑃𝑃𝑘𝑘] = 𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀,𝑊𝑊𝑘𝑘+1]: 
 

[−𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘]𝜆𝜆𝑀𝑀 + [𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘](1 − 𝜆𝜆𝑀𝑀) = 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1 
 
 

𝜆𝜆𝑀𝑀∗ =
(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)

2𝑆𝑆𝑘𝑘
 

 
Similarly, for the APT’s mixture 𝐸𝐸𝑇𝑇[𝑀𝑀𝑘𝑘 , 𝜆𝜆𝑃𝑃] = 𝐸𝐸𝑇𝑇[𝑁𝑁𝑘𝑘, 𝜆𝜆𝑃𝑃]: 
 

[𝑆𝑆𝑘𝑘 − 𝑐𝑐𝑘𝑘]𝜆𝜆𝑃𝑃 + [−𝑆𝑆𝑘𝑘+1 − 𝑐𝑐𝑘𝑘](1 − 𝜆𝜆𝑃𝑃) = [−𝑆𝑆𝑘𝑘]𝜆𝜆𝑃𝑃 + [−𝑆𝑆𝑘𝑘+1](1− 𝜆𝜆𝑃𝑃) 
 

𝜆𝜆𝑃𝑃∗ =
𝑐𝑐𝑘𝑘

2𝑆𝑆𝑘𝑘
 

 
Substituting 𝜆𝜆𝑀𝑀∗  and 𝜆𝜆𝑃𝑃∗  into the formula for 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀, 𝜆𝜆𝑃𝑃] in equation (1): 
 
𝐸𝐸𝑇𝑇 �𝜆𝜆𝑀𝑀

∗
,𝜆𝜆𝑃𝑃

∗
� = 2𝑆𝑆𝑘𝑘 �

(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)
2𝑆𝑆𝑘𝑘

� �
𝑐𝑐𝑘𝑘

2𝑆𝑆𝑘𝑘
� − 𝑐𝑐𝑘𝑘 �

(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)
2𝑆𝑆𝑘𝑘

� − 𝑆𝑆𝑘𝑘 �
𝑐𝑐𝑘𝑘

2𝑆𝑆𝑘𝑘
� − 𝑆𝑆𝑘𝑘+1 �

2𝑆𝑆𝑘𝑘 − 𝑐𝑐𝑘𝑘
2𝑆𝑆𝑘𝑘

� 

 
 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀∗ , 𝜆𝜆𝑃𝑃∗ ] = 𝑐𝑐𝑘𝑘𝑆𝑆𝑘𝑘+1−𝑐𝑐𝑘𝑘𝑆𝑆𝑘𝑘−2𝑆𝑆𝑘𝑘+1𝑆𝑆𝑘𝑘

2𝑆𝑆𝑘𝑘
 ∎ 

 
Target as Stackelberg leader: proof of Result 2 and its accompanying characterization. 
 
Case 1: 𝜆𝜆𝑀𝑀𝐿𝐿 > 𝜆𝜆𝑀𝑀∗ > 0, implying 𝜆𝜆𝑃𝑃𝐹𝐹 = 0 is the APT’s best reply. Given 𝜆𝜆𝑃𝑃𝐹𝐹 = 0, the Target-as-
leader’s optimal strategy is 𝑁𝑁𝑘𝑘; i.e., 𝜆𝜆𝑀𝑀𝐿𝐿 = 0, which contradicts 𝜆𝜆𝑀𝑀𝐿𝐿 > 𝜆𝜆𝑀𝑀∗ > 0. 
 
Case 2: 𝜆𝜆𝑀𝑀𝐿𝐿 < 𝜆𝜆𝑀𝑀∗ < 1, implying 𝜆𝜆𝑃𝑃𝐹𝐹 = 1 is the APT’s best reply. Given 𝜆𝜆𝑃𝑃𝐹𝐹 = 1, the Target-as-
leader’s optimal strategy is 𝑁𝑁𝑘𝑘; i.e., 𝜆𝜆𝑀𝑀𝐿𝐿 = 1, which contradicts 𝜆𝜆𝑀𝑀𝐿𝐿 < 𝜆𝜆𝑀𝑀∗ < 1. 
 
These two cases imply the Target commits to 𝜆𝜆𝑀𝑀𝐿𝐿 = 𝜆𝜆𝑀𝑀∗  as the Stackelberg leader. By the 
indifference property on Nash strategies, 𝐸𝐸𝐴𝐴�𝜆𝜆𝑀𝑀∗ , �̃�𝜆𝑃𝑃� = 𝐸𝐸𝐴𝐴�𝜆𝜆𝑀𝑀∗ , �̂�𝜆𝑃𝑃� ∀�̃�𝜆𝑃𝑃, �̂�𝜆𝑃𝑃 ∈ [0,1]. That is, the 
follower’s best reply to the leader’s Nash strategy is a correspondence, rather than a function. 
However, given the Target’s commitment to 𝜆𝜆𝑀𝑀∗ , a Byzantine APT selects 𝜆𝜆𝑃𝑃𝐹𝐹  from its set of best 
replies to minimize 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀∗ , 𝜆𝜆𝑃𝑃𝐹𝐹].  Moreover, as 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀∗ , 𝜆𝜆𝑃𝑃] is linear in 𝜆𝜆𝑃𝑃𝐹𝐹, only the extreme values 
of 𝜆𝜆𝑃𝑃𝐹𝐹  need be considered to identify the minimum. Here, 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀∗ ,𝑃𝑃𝑘𝑘] < 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀∗ ,𝑊𝑊𝑘𝑘+1]: 
 



21 
 
 [𝑆𝑆𝑘𝑘 − 𝑐𝑐𝑘𝑘]𝜆𝜆𝑀𝑀∗ + [−𝑆𝑆𝑘𝑘](1 − 𝜆𝜆𝑀𝑀∗ ) < [−𝑆𝑆𝑘𝑘+1 − 𝑐𝑐𝑘𝑘]𝜆𝜆𝑀𝑀∗ + [−𝑆𝑆𝑘𝑘+1](1 − 𝜆𝜆𝑀𝑀∗ ) 
 

𝜆𝜆𝑀𝑀∗ <
𝑆𝑆𝑘𝑘 − 𝑆𝑆𝑘𝑘+1

2𝑆𝑆𝑘𝑘
 

Substituting the value of 𝜆𝜆𝑀𝑀∗ : 
 

(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)
2𝑆𝑆𝑘𝑘

=
𝑆𝑆𝑘𝑘 − 𝑆𝑆𝑘𝑘+1 − (𝜋𝜋𝑘𝑘 − 𝜔𝜔𝑘𝑘+1)

2𝑆𝑆𝑘𝑘
<
𝑆𝑆𝑘𝑘 − 𝑆𝑆𝑘𝑘+1

2𝑆𝑆𝑘𝑘
 

 
Finally, we show 𝜆𝜆𝑃𝑃𝐹𝐹 = 1 ⇒ 𝑃𝑃𝑘𝑘 satisfies Breton, Alj and Haurie’s (1988) three-step procedure 
for validating Weak Stackelberg follower best replies. First, identify the APT’s best replies to 
the Target’s-as-leader’s strategy, 𝑏𝑏𝑏𝑏𝐴𝐴(𝜆𝜆𝑀𝑀𝐿𝐿 ). Second, find the APT’s maximum payoff for these 
best replies. Call this payoff E𝐴𝐴∗[𝜆𝜆𝑀𝑀𝐿𝐿 ] = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀𝐿𝐿 , 𝜆𝜆𝑃𝑃]|𝜆𝜆𝑃𝑃𝜖𝜖𝑏𝑏𝑏𝑏𝐴𝐴(𝜆𝜆𝑀𝑀𝐿𝐿 )}. Third,  𝜆𝜆𝑃𝑃𝐹𝐹  must satisfy 
𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀𝐿𝐿 , 𝜆𝜆𝑃𝑃] ≥ E𝐴𝐴∗[𝜆𝜆𝑀𝑀𝐿𝐿 ] − 𝜀𝜀 for some 𝜀𝜀 ≥ 0. Operationalizing this procedure: 
 
First, as 𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀𝐿𝐿 ] is linear in 𝜆𝜆𝑃𝑃𝐹𝐹, only extreme values of 𝜆𝜆𝑃𝑃𝐹𝐹  need be considered for E𝐴𝐴∗[𝜆𝜆𝑀𝑀𝐿𝐿 ]. 
Second, as 𝜆𝜆𝑀𝑀𝐿𝐿  is the same as the Target’s Nash strategy, 𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀𝐿𝐿 ,𝑃𝑃𝑘𝑘] = 𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀𝐿𝐿 ,𝑊𝑊𝑘𝑘+1],  
implying E𝐴𝐴∗[𝜆𝜆𝑀𝑀𝐿𝐿 ] = 𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀𝐿𝐿 ,𝑃𝑃𝑘𝑘] = 𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀𝐿𝐿 ,𝑊𝑊𝑘𝑘+1]. Third, trivially 𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀𝐿𝐿 ,𝑃𝑃𝑘𝑘] ≥ E𝐴𝐴∗[𝜆𝜆𝑀𝑀𝐿𝐿 ]− 𝜀𝜀  
∀𝜀𝜀 ≥ 0.∎ 
 
Kill chain: proof of Result 3 and its accompanying characterization. 
 
Equation (1) can be rewritten as 
 
 𝐸𝐸𝑇𝑇�𝜆𝜆𝑀𝑀𝑘𝑘 , 𝜆𝜆𝑃𝑃� = �2𝑆𝑆𝑘𝑘𝜆𝜆𝑀𝑀𝑘𝑘 − 𝑆𝑆𝑘𝑘 + 𝑆𝑆𝑘𝑘+1�𝜆𝜆𝑃𝑃 − 𝑐𝑐𝑘𝑘𝜆𝜆𝑀𝑀𝑘𝑘 − 𝑆𝑆𝑘𝑘+1 
 
As a Byzantine APT sets 𝜆𝜆𝑃𝑃 to minimize the Target’s payoff, 𝐸𝐸𝑇𝑇�𝜆𝜆𝑀𝑀𝑘𝑘 , 𝜆𝜆𝑃𝑃�, the Target maximizes 
its payoff by minimizing the effect of 𝜆𝜆𝑃𝑃 on 𝐸𝐸𝑇𝑇�𝜆𝜆𝑀𝑀𝑘𝑘 , 𝜆𝜆𝑃𝑃�. That is, it chooses 𝜆𝜆𝑀𝑀𝑘𝑘  to eliminate the 
influence of 𝜆𝜆𝑃𝑃 on 𝐸𝐸𝑇𝑇�𝜆𝜆𝑀𝑀𝑘𝑘 ,𝜆𝜆𝑃𝑃� by setting the coefficient on 𝜆𝜆𝑃𝑃 in brackets equal to zero. 
Setting 2𝑆𝑆𝑘𝑘𝜆𝜆𝑀𝑀𝑘𝑘 − 𝑆𝑆𝑘𝑘 + 𝑆𝑆𝑘𝑘+1 = 0 yields 𝜆𝜆𝑀𝑀𝑘𝑘 = 𝑆𝑆𝑘𝑘−𝑆𝑆𝑘𝑘+1

2𝑆𝑆𝑘𝑘
. ∎ 

 
To build 𝜆𝜆𝑃𝑃𝑘𝑘  we again use the three-step procedure in Breton, Alj and Haurie (1988), as 
described in the proof of Result 2.  First, given 𝜆𝜆𝑀𝑀𝑘𝑘 = 𝑆𝑆𝑘𝑘−𝑆𝑆𝑘𝑘−1

2𝑆𝑆𝑘𝑘
, the APT’s best reply will be an 

extreme value of 𝜆𝜆𝑃𝑃 because 𝐸𝐸𝐴𝐴�𝜆𝜆𝑀𝑀𝑘𝑘 , 𝜆𝜆𝑃𝑃� is linear in 𝜆𝜆𝑃𝑃: 
 

𝐸𝐸𝐴𝐴�𝜆𝜆𝑀𝑀𝑘𝑘 ,𝑃𝑃𝑘𝑘� = [−𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘] �
𝑆𝑆𝑘𝑘 − 𝑆𝑆𝑘𝑘−1

2𝑆𝑆𝑘𝑘
� + [𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘] �

𝑆𝑆𝑘𝑘 + 𝑆𝑆𝑘𝑘−1
2𝑆𝑆𝑘𝑘

� = 0 

 
𝐸𝐸𝐴𝐴�𝜆𝜆𝑀𝑀𝑘𝑘 ,𝑊𝑊𝑘𝑘+1� =  𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1 > 0 

 
Clearly, 𝐸𝐸𝐴𝐴�𝜆𝜆𝑀𝑀𝑘𝑘 ,𝑊𝑊𝑘𝑘+1� > 𝐸𝐸𝐴𝐴�𝜆𝜆𝑀𝑀𝑘𝑘 ,𝑃𝑃𝑘𝑘�. Second, E𝐴𝐴∗�𝜆𝜆𝑀𝑀𝑘𝑘 � = 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1. Third, given the 
expression for 𝐸𝐸𝐴𝐴[𝜆𝜆𝑀𝑀, 𝜆𝜆𝑃𝑃] in equation (3), and setting 𝜀𝜀 = 0, 𝐸𝐸𝐴𝐴�𝜆𝜆𝑀𝑀𝑘𝑘 ,𝜆𝜆𝑃𝑃� must satisfy 
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 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1 + [(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)]𝜆𝜆𝑃𝑃 − 2𝑆𝑆𝑘𝑘𝜆𝜆𝑀𝑀𝑘𝑘 𝜆𝜆𝑃𝑃 ≥ 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1 
 
Canceling the 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1 term on each side and substituting in the value for 𝜆𝜆𝑀𝑀𝑘𝑘  
 

[(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)] �
𝑆𝑆𝑘𝑘 − 𝑆𝑆𝑘𝑘−1

2𝑆𝑆𝑘𝑘
� − 2𝑆𝑆𝑘𝑘 �

𝑆𝑆𝑘𝑘 − 𝑆𝑆𝑘𝑘−1
2𝑆𝑆𝑘𝑘

� 𝜆𝜆𝑃𝑃 ≥ 0 

 
[(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)]

2𝑆𝑆𝑘𝑘
≥ 𝜆𝜆𝑃𝑃  

 
Although 𝜆𝜆𝑃𝑃 = 0 satisfies this inequality, the ATP never penetrates. An ATP that never 
penetrates is not of interest nor is it Byzantine. Hence, 𝜆𝜆𝑃𝑃 is instead set to its upper bound: 
 

𝜆𝜆𝑃𝑃𝑘𝑘 = [(𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]
2𝑆𝑆𝑘𝑘

 ∎ 

 

Proof that the kill chain outcome and the Nash outcome generate the same payoff for the 
Target: 𝐸𝐸𝑇𝑇�𝜆𝜆𝑀𝑀𝑘𝑘 , 𝜆𝜆𝑃𝑃𝑘𝑘� = 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀∗ , 𝜆𝜆𝑃𝑃∗ ]. The value of 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀∗ , 𝜆𝜆𝑃𝑃∗ ] is given in the characterization of the 
Nash equilibrium. The value of 𝐸𝐸𝑇𝑇�𝜆𝜆𝑀𝑀𝑘𝑘 , 𝜆𝜆𝑃𝑃𝑘𝑘� is derived from Equation (1) with the values for 
𝜆𝜆𝑀𝑀𝑘𝑘  and 𝜆𝜆𝑃𝑃𝑘𝑘 .  

𝐸𝐸𝑇𝑇�𝜆𝜆𝑀𝑀𝑘𝑘 , 𝜆𝜆𝑃𝑃𝑘𝑘� = 2𝑆𝑆𝑘𝑘 �
𝑆𝑆𝑘𝑘 − 𝑆𝑆𝑘𝑘−1

2𝑆𝑆𝑘𝑘
� �

[(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)]
2𝑆𝑆𝑘𝑘

� − 𝑐𝑐𝑘𝑘 �
𝑆𝑆𝑘𝑘 − 𝑆𝑆𝑘𝑘−1

2𝑆𝑆𝑘𝑘
�

− 𝑆𝑆𝑘𝑘 �
[(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)]

2𝑆𝑆𝑘𝑘
�

+ 𝑆𝑆𝑘𝑘+1 �
2𝑆𝑆𝑘𝑘 − [(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) + (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)]

2𝑆𝑆𝑘𝑘
� 

=
𝑐𝑐𝑘𝑘𝑆𝑆𝑘𝑘+1 − 𝑐𝑐𝑘𝑘𝑆𝑆𝑘𝑘 − 2𝑆𝑆𝑘𝑘+1𝑆𝑆𝑘𝑘

2𝑆𝑆𝑘𝑘
= 𝐸𝐸𝑇𝑇[𝜆𝜆𝑀𝑀∗ , 𝜆𝜆𝑃𝑃∗ ] 

Canceling the 𝑐𝑐𝑘𝑘 terms on both sides, the 2𝑆𝑆𝑘𝑘 > 0 denominators, and expanding terms: 
 
𝑆𝑆𝑘𝑘[(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)] − 𝑆𝑆𝑘𝑘+1[(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) + (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)] − 𝑆𝑆𝑘𝑘[(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) −
(𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)] − 2𝑆𝑆𝑘𝑘+1𝑆𝑆𝑘𝑘 + 𝑆𝑆𝑘𝑘+1[(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) + (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)] = −2𝑆𝑆𝑘𝑘+1𝑆𝑆𝑘𝑘 ∎ 
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Correlated equilibrium: proof of Result 4 and its accompanying characterization. 

When 𝑀𝑀𝑘𝑘 is the realization of 𝜌𝜌, 𝐸𝐸𝑇𝑇[𝑀𝑀𝑘𝑘|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑀𝑀𝑊𝑊] ≥ 𝐸𝐸𝑇𝑇[𝑁𝑁𝑘𝑘|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑀𝑀𝑊𝑊] requires 
 
 [𝑆𝑆𝑘𝑘 − 𝑐𝑐𝑘𝑘]𝜌𝜌𝑀𝑀𝑃𝑃 + [−𝑆𝑆𝑘𝑘+1 − 𝑐𝑐𝑘𝑘]𝜌𝜌𝑀𝑀𝑊𝑊 ≥ [−𝑆𝑆𝑘𝑘]𝜌𝜌𝑀𝑀𝑃𝑃 + [−𝑆𝑆𝑘𝑘+1]𝜌𝜌𝑀𝑀𝑊𝑊  
 
 𝜌𝜌𝑀𝑀𝑃𝑃 ≥

𝑐𝑐𝑘𝑘
2𝑆𝑆𝑘𝑘−𝑐𝑐𝑘𝑘

∙ 𝜌𝜌𝑀𝑀𝑊𝑊           (A1) 
 
When 𝑃𝑃𝑘𝑘 is the realization of 𝜌𝜌, 𝐸𝐸𝐴𝐴[𝑃𝑃𝑘𝑘|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑁𝑁𝑃𝑃] ≥ 𝐸𝐸𝑇𝑇[𝑊𝑊𝑘𝑘+1|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑁𝑁𝑃𝑃] requires 
 
 [−𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘]𝜌𝜌𝑀𝑀𝑃𝑃 + [𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘]𝜌𝜌𝑁𝑁𝑃𝑃 ≥ [ 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1]𝜌𝜌𝑀𝑀𝑃𝑃 + [ 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1]𝜌𝜌𝑁𝑁𝑃𝑃 
 
 [(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)]𝜌𝜌𝑁𝑁𝑃𝑃 ≥ [(𝑆𝑆𝑘𝑘 + 𝜋𝜋𝑘𝑘) +  (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)]𝜌𝜌𝑀𝑀𝑃𝑃  
 
Which defines a lower bound on 𝜌𝜌𝑁𝑁𝑃𝑃 in terms of 𝜌𝜌𝑀𝑀𝑃𝑃: 
 
 𝜌𝜌𝑁𝑁𝑃𝑃 ≥

[(𝑆𝑆𝑘𝑘+𝜋𝜋𝑘𝑘)+(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]
[(𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)] ∙ 𝜌𝜌𝑀𝑀𝑃𝑃        (A2)  

 
as the coefficient on  𝜌𝜌𝑀𝑀𝑃𝑃  is greater than one, this immediately provides the characterization 
𝜌𝜌𝑁𝑁𝑃𝑃 ≥ 𝜌𝜌𝑀𝑀𝑃𝑃. 
 
When 𝑁𝑁𝑘𝑘 is the realization of 𝜌𝜌, 𝐸𝐸𝑇𝑇[𝑁𝑁𝑘𝑘|𝜌𝜌𝑁𝑁𝑃𝑃,𝜌𝜌𝑁𝑁𝑊𝑊] ≥ 𝐸𝐸𝐴𝐴[𝑀𝑀𝑘𝑘|𝜌𝜌𝑁𝑁𝑃𝑃,𝜌𝜌𝑁𝑁𝑊𝑊] requires  
 
 [−𝑆𝑆𝑘𝑘]𝜌𝜌𝑁𝑁𝑃𝑃 + [−𝑆𝑆𝑘𝑘+1]𝜌𝜌𝑁𝑁𝑊𝑊 ≥ [𝑆𝑆𝑘𝑘 − 𝑐𝑐𝑘𝑘]𝜌𝜌𝑁𝑁𝑃𝑃 + [−𝑆𝑆𝑘𝑘+1 − 𝑐𝑐𝑘𝑘]𝜌𝜌𝑁𝑁𝑊𝑊 
 
which defines a lower bound on 𝜌𝜌𝑁𝑁𝑊𝑊 in terms of 𝜌𝜌𝑁𝑁𝑃𝑃:  
 
 𝜌𝜌𝑁𝑁𝑊𝑊 ≥ 2𝑆𝑆𝑘𝑘−𝑐𝑐𝑘𝑘

𝑐𝑐𝑘𝑘
𝜌𝜌𝑁𝑁𝑃𝑃     

 
Substituting the lower bound for 𝜌𝜌𝑁𝑁𝑃𝑃 in equation (A2): 
 
 𝜌𝜌𝑁𝑁𝑊𝑊 ≥ 2𝑆𝑆𝑘𝑘−𝑐𝑐𝑘𝑘

𝑐𝑐𝑘𝑘
∙ [(𝑆𝑆𝑘𝑘+𝜋𝜋𝑘𝑘)+(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]

[(𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)] ∙ 𝜌𝜌𝑀𝑀𝑃𝑃       (A3)   
 
When 𝑊𝑊𝑘𝑘+1 is the realization of 𝜌𝜌, 𝐸𝐸𝐴𝐴[𝑊𝑊𝑘𝑘+1|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑁𝑁𝑃𝑃] ≥ 𝐸𝐸𝐴𝐴[𝑃𝑃𝑘𝑘|𝜌𝜌𝑀𝑀𝑃𝑃 ,𝜌𝜌𝑁𝑁𝑃𝑃] requires 
 
 [ 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1]𝜌𝜌𝑀𝑀𝑊𝑊 + [ 𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1]𝜌𝜌𝑁𝑁𝑊𝑊 ≥ [−𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘]𝜌𝜌𝑀𝑀𝑊𝑊 + [𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘]𝜌𝜌𝑁𝑁𝑊𝑊 
 
 [(𝑆𝑆𝑘𝑘 + 𝜋𝜋𝑘𝑘) +  (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)]𝜌𝜌𝑀𝑀𝑊𝑊 ≥ [(𝑆𝑆𝑘𝑘 − 𝜋𝜋𝑘𝑘) − (𝑆𝑆𝑘𝑘+1 − 𝜔𝜔𝑘𝑘+1)]𝜌𝜌𝑁𝑁𝑊𝑊 
 
which gives a lower bound on 𝜌𝜌𝑀𝑀𝑊𝑊  in terms of 𝜌𝜌𝑁𝑁𝑊𝑊: 
 
 𝜌𝜌𝑀𝑀𝑊𝑊 ≥ [(𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]

[(𝑆𝑆𝑘𝑘+𝜋𝜋𝑘𝑘)+ (𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]𝜌𝜌𝑁𝑁𝑊𝑊        
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Substituting the lower bound on 𝜌𝜌𝑁𝑁𝑊𝑊 in equation (A2)  
 
 𝜌𝜌𝑀𝑀𝑊𝑊 ≥ 2𝑆𝑆𝑘𝑘−𝑐𝑐𝑘𝑘

𝑐𝑐𝑘𝑘
∙ 𝜌𝜌𝑀𝑀𝑃𝑃          (A4) 

 
By definition, 𝜌𝜌𝑀𝑀𝑃𝑃 + 𝜌𝜌𝑀𝑀𝑊𝑊 + 𝜌𝜌𝑁𝑁𝑃𝑃 + 𝜌𝜌𝑁𝑁𝑊𝑊 = 1. Substituting the lower bound for 𝜌𝜌𝑀𝑀𝑊𝑊  in (A4), for 
𝜌𝜌𝑁𝑁𝑃𝑃 in (A2), and 𝜌𝜌𝑁𝑁𝑊𝑊 in (A3), the add up condition for 𝜌𝜌 becomes: 
 
 𝜌𝜌𝑀𝑀𝑃𝑃 ∙ �1 + 2𝑆𝑆𝑘𝑘−𝑐𝑐𝑘𝑘

𝑐𝑐𝑘𝑘
+ [(𝑆𝑆𝑘𝑘+𝜋𝜋𝑘𝑘)+(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]

[(𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)] + 2𝑆𝑆𝑘𝑘−𝑐𝑐𝑘𝑘
𝑐𝑐𝑘𝑘

∙ [(𝑆𝑆𝑘𝑘+𝜋𝜋𝑘𝑘)+(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]
[(𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]� = 1   

 
That is,  
 
 𝜌𝜌𝑀𝑀𝑃𝑃 = 𝑐𝑐𝑘𝑘[(𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]

2𝑆𝑆𝑘𝑘[(𝑆𝑆𝑘𝑘−𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]+2𝑆𝑆𝑘𝑘[(𝑆𝑆𝑘𝑘+𝜋𝜋𝑘𝑘)−(𝑆𝑆𝑘𝑘+1−𝜔𝜔𝑘𝑘+1)]  ∎  
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