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ABSRACT 
 

Drawing on Routine Activity Theory, this study examines how vendor-originated 

vulnerabilities influence data breach likelihood. Using data from 13,005 U.S. firms between 

2010 and 2018, we develop a comprehensive measure of vendor-originated vulnerabilities by 

aggregating CVSS scores for all CVEs that may affect a firm’s systems and security posture. 

Importantly, we find novel interactions among RAT’s dimensions: timely external guardianship, 

such as vendor patch availability and detailed vulnerability knowledge dissemination, mitigates 

vulnerability risk, whereas external visibility, driven by media attention, intensifies breach 

likelihood. Furthermore, we unpack the CVSS score, highlighting that confidentiality and 

availability sub-scores within the CVSS framework are particularly predictive of breaches. 

Additionally, using non-parametric threshold detection methods, we identify a threshold effect 

around a firm level aggregate CVSS score of 4.6, further validated through real-world breach 

cases, and provide consistent causal evidence supporting our main findings through Difference-

in-Differences and a set of robustness checks. Our study makes a distinct theoretical contribution 

and addresses a longstanding gap in cybersecurity research on third-party software risks. 
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INTRODUCTION 

As organizations broaden their digital presence, external software vendors and 

commercial off‐the‐shelf (COTS) solutions have become integral to everyday operations 

(Loukas, 2015). This growing reliance on external parties in building technology ecosystem can 

create a “black box” of third‐party code that harbors hidden vulnerabilities, as illustrated by 

high‐profile data breaches at Target, Marriott, and Equifax (Berghel, 2020; Malatesta III, 2016). 

Cybercriminals have capitalized on these vendor dependencies, driving a 180% increase in 

vulnerability exploitation for initial entry between 2022 and 2023, while “island hopping” 

attacks that breach smaller vendors before moving into larger targets have surged (Poireault, 

2024; Esther Kezia, 2019; Yeboah‐Ofori & Opoku‐Akyea, 2019). Recent evidence suggests that 

95% of production assets contain at least one vulnerability ranking in the top 5% for exploit 

likelihood, highlighting widespread and critical exposure across enterprises (Cyentia Institute & 

Kenna Security, 2022). The financial stakes of such cyber exploits are formidable: each data 

breach can cost a firm up to 4.88 million dollars, and total cybercrime expenses are predicted to 

reach 10.5 trillion dollars by 2025 (Thomson Reuters, 2024). In this evolving threat landscape, 

understanding how vendor-originated vulnerabilities translate into realized breaches is 

increasingly urgent. 

 Despite growing awareness of vendor-centric threats, a critical theoretical and empirical 

gap persists in understanding how vendor-originated vulnerabilities affect firm cybersecurity. 

Routine Activity Theory (RAT) posits that crime occurs when three elements converge: a 

suitable target, motivated offenders, and the absence of capable guardianship (Cohen & Felson, 

1979). Traditionally, RAT in cybersecurity predominantly focuses on internally generated 

vulnerabilities or isolated external threats (Leukfeldt & Yar, 2016), rather than the cumulative 

risk introduced by a firm's entire third-party software ecosystem (Boyson, 2014; Jacobs et al., 
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2020). Consequently, the manner in which external vendor dependencies shape firms' "target 

suitability" by aggregating vulnerabilities remains under-theorized. 

This oversight contributes to a critical empirical vacuum. Organizations widely rely on 

vulnerability severity metrics, such as CVSS scores, to prioritize vulnerability management and 

patching (Goodman, 2024). Theoretically, these metrics facilitate effective prioritization, 

enabling firms to proactively address vulnerabilities and mitigate susceptibility to attacks. 

However, the remediation rates remain low, with firms addressing only 16% of vulnerabilities on 

a monthly basis (Cyentia Institute & Kenna Security, 2022). Persistent high-profile breaches, 

such as the 2017 Equifax incident where vendor-originated vulnerabilities remained unpatched, 

highlight significant theoretical shortcomings in understanding vulnerabilities originating beyond 

organizational boundaries (Yeboah-Ofori & Opoku-Akyea, 2019; August et al., 2019). Such 

incidents illustrate the substantial challenges firms face, underscoring potential inefficiencies in 

current vulnerability management processes. Thus, vulnerability management must be 

reconceptualized theoretically as an inter-organizational issue (Boyson, 2014; Jacobs et al., 

2020). Existing theoretical frameworks must better explain how external dependencies influence 

vulnerability prioritization and management outcomes, particularly given practical constraints on 

comprehensive patching. A theoretically grounded understanding is crucial to clarifying why 

certain vendor-originated vulnerabilities remain inadequately addressed despite their known 

severity, thus guiding organizations toward more effective cybersecurity strategies.  

While vendor-originated vulnerabilities define the initial conditions for breach risks, the 

effectiveness of a firm’s vulnerability management processes ultimately determines whether 

these risks materialize into actual breaches. However, firms face significant challenges in 

vulnerability management due to their inherent dependencies on external players, including 
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software vendors for timely patch releases and security infomediaries for critical vulnerability 

disclosures and guidance (Kannan & Telang, 2005; Chen et al., 2007). Further complicating 

these challenges is media coverage, which publicly disseminates vulnerability information, 

unintentionally increasing its visibility and attractiveness to cyber attackers, complicating firms' 

vulnerability prioritization and remediation processes (Holt et al., 2020; Zorz, 2019). 

When such external parties, including software vendors and security infomediaries, 

involved in vulnerability management processes, fail, or operate ineffectively, the risks 

associated with vendor-originated vulnerabilities escalate. Such failures extend the window for 

attackers to exploit vulnerabilities, significantly elevating breach risks (August et al., 2019; 

Jacobs et al., 2020). Although existing literature has explored certain aspects of vulnerability 

management, such as the economic incentives influencing patch deployment (Arora et al., 2010; 

August et al., 2019), comprehensive empirical investigations into these multifaceted dimensions 

remain absent. To address this gap and comprehensively understand how aggregated vendor-

originated vulnerability severity impacts breach likelihood, we pose our research question: 

 Does a firm’s vendor-originated vulnerability impact the likelihood of data breaches? 

If so, how do key external factors, including patch availability, patch release time, 

vulnerability knowledge, and media coverage, moderate this impact? 

To theorize this question, we extend RAT by highlighting external factors beyond 

malicious actors, such as vendor-originated vulnerabilities, that significantly expand firms' 

suitability as targets. Further, we emphasize the critical role external actors, including vendors 

and infomediaries, play in shaping two key RAT dimensions: target visibility and capable 

guardianship. Our augmented RAT framework thus underscores external guardianship provided 

by vendors through timely patching and by infomediaries through vulnerability disclosures. 

Guided by this theoretical framework, we conduct comprehensive analyses. Using a novel 
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dataset comprising 13,005 U.S. firms between 2010 and 2018, we merge site-level vendor data 

with the National Vulnerability Database (NVD) to capture each firm's aggregated severity of 

vendor-specific vulnerabilities. Our empirical analysis reveals that higher aggregated vendor-

originated vulnerability severity significantly elevates breach likelihood. Furthermore, we find 

that patch availability, and comprehensive vulnerability knowledge mitigates breach risks, 

whereas delayed patches and heightened media attention intensify these risks. In addition, we 

unpack the CVSS score and identify that Confidentiality and Availability sub-scores within the 

CVSS framework are particularly predictive of breaches. We also observe a distinct threshold 

around a CVSS score of 4.6. Based on the threshold, Difference-in-Differences and a set of 

robustness checks yield causal evidence supporting our main findings.  

Our study offers several principal contributions. First, we extend RAT by empirically 

demonstrating how external vendors and infomediaries critically influence firm-level breach risk 

through their roles in patch availability, vulnerability disclosure, and inter-organizational 

coordination. Second, we uniquely examine the interactions among RAT dimensions, which 

have traditionally been explored independently rather than jointly, offering a richer theoretical 

explanation of cybercrime dynamics. Third, we introduce a comprehensive measure of firm-

level, vendor-originated vulnerability severity, facilitating related empirical investigations by 

linking individual CVEs and CVSS to firms' vendor ecosystems. Fourth, we enhance the existing 

understanding of the CVSS framework by empirically identifying a threshold effect and 

pinpointing critical CVSS metrics, particularly Confidentiality and Availability, that significantly 

predict breaches, providing benchmarks for targeted patch prioritization. Lastly, we offer 

practical implications for vendor oversight, supply chain risk management, vulnerability 

prioritization practices, and strategic cybersecurity planning.  
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BACKGROUND, THEORY, AND HYPOTHESIS 

Cyber Supply Chains 

Organizations do not possess all the resources necessary for their operation; therefore, 

they must acquire critical inputs from external sources (Pfeffer & Salancik, 1978). Therefore, 

understanding the various contingencies in the external environment where organizations interact 

is essential, with dependence and uncertainty being two key conditions that shape a firm's 

reliance on external partnerships (Hillman et al., 2009; Pfeffer & Salancik, 1978). In the context 

of digitization, organizations increasingly rely on Commercial Off the Shelf (COTS) solutions 

provided by external software vendors, which can accelerate deployment yet introduce added 

risk (Zhu & Zhou, 2012). On the one hand, engaging with external providers creates substantial 

value (Cho et al., 2013; Nagle, 2019; Taştan & Gönel, 2020). On the other hand, COTS software 

creates shared burdens and uncertainty for both the vendor and the client firm. Design shortcuts 

or failures to adhere to development standards can lead to accumulating technical debt, 

undermining reliability (Ramasubbu & Kemerer, 2016, Özkan, 2019). This uncertainty is 

magnified in vendor supply chains, where a single vulnerable product can be deployed at 

multiple client sites, compounding the risk of widespread exploits (Jacobs et al., 2020). As a 

result, Cyber Supply Chain Risk Management (CSCRM) has emerged as a cross-functional 

approach to address these externally introduced vulnerabilities, bringing together cybersecurity, 

enterprise risk management, and supply chain management perspectives (Boyson, 2014). While 

emerging technology vulnerabilities continue to expose organizations to significant cyber risks, 

few studies have systematically linked vendor-originated vulnerabilities to organization-level 

breach incidents and explored the factors that affect related cybercriminals. 

This gap partly reflects the difficulty of attributing vulnerabilities to specific firms, 

especially when the same COTS product is deployed at thousands of client sites. To address 
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these challenges, we develop an innovative measure that aggregates all vulnerabilities within a 

firm's ecosystem and provide insights into the impact of vendor-originated vulnerabilities on 

organizations' data breaches, thereby contributing to cyber supply chain literature through a 

vendor-centric lens. 

Cybercrime and Routine Activity Theory 
Over the past decades, the widespread adoption of the internet and digital technologies 

has enabled increasingly sophisticated cyberattacks. Despite this technological evolution, 

cybercriminals' underlying motivations have largely remained stable (Rightley et al., 2023). 

Typically viewed as rational actors, cybercriminals weigh the potential benefits against the costs 

of their illicit activities (Cohen & Felson, 1979; Gibbs, 1968). Benefits include financial rewards 

from selling vulnerabilities or compromised data (Ablon & Libicki, 2015; Wegberg et al., 2020), 

moral satisfaction derived from perceived justice (Benjamin et al., 2016; D’Arcy et al., 2020), or 

recognition gained by demonstrating hacking prowess (Zhang et al., 2015). The associated costs 

involve the risk of detection, apprehension, and the time and resources required for intrusion 

(D'Arcy et al., 2009; Hui et al., 2017).  

Routine Activity Theory (RAT) (Cohen & Felson, 1979) offers a robust framework for 

understanding these cybercrime dynamics. It posits that crime occurs when three elements 

converge: (1) a suitable target (valuable, visible, and accessible), (2) a motivated offender, and 

(3) the absence of a capable guardian. While existing studies frequently examine these factors 

independently (e.g., Hui et al., 2017; Wang et al., 2015; D'Arcy et al., 2009), rarely exploring 

their interactive effects. To address the gap, we extend RAT by shifting the theoretical focus 

from internal organizational vulnerabilities and defenses to external vulnerabilities introduced by 

third-party vendors, alongside the externally provided guardianship mechanisms addressing these 

risks. 
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Security Vulnerability Management 
Software applications inevitably contain security vulnerabilities that can be exploited by 

malicious actors. These flaws arise due to programming errors (Anu et al., 2020), the inherent 

complexity of software structure (Chowdhury & Zulkernine, 2010), and insufficient testing time 

(Parwal, 2024). Firms adopting COTS solutions may discover too late that vendor-originated 

vulnerabilities pose critical risks (Pratt, 2022). Research on vulnerability management has 

focused on mitigating risks at different stages, including incentive structures for vulnerability 

discovery (Kannan & Telang, 2005; Ozment, 2004; Ransbotham, 2010; Zhao et al., 2018), 

vulnerability disclosure (Arora et al., 2008; Cavusoglu et al., 2007; Ruohonen & Allodi, 2018; 

Sen et al., 2020), and optimal patching policy (August & Tunca, 2008; Cavusoglu et al., 2008; 

August et al., 2019).  

Beyond IT vendors, other external entities also shape how quickly and widely 

vulnerability information disseminates, acting as infomediaries (Kannan & Telang, 2005). 

Although the roles of vendors and infomediaries in cybersecurity are widely recognized (Arora 

et al., 2010; Cavusoglu et al., 2007; Ruohonen & Allodi, 2018), there is a shortage of empirical 

research on how the actions of external software suppliers. Our study fills in the gap by 

incorporating multiple vulnerability dimensions based on the widely used CVSS framework and 

examining contingency factors that include vendor patch availability, patch timing, and 

vulnerability knowledge. We provide valuable insights into how firms can effectively defend 

against exploitation attempts. Our results offer both theoretical and practical contributions to the 

security vulnerability management literature, underscoring the significant role that vendors and 

external infomediaries play in mitigating or exacerbating organizational exposure. 
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HYPOTHESIS DEVELOPMENT 

Building on Routine Activity Theory in the context of security vulnerability management, 

we develop a research model to examine how vendor-originated vulnerabilities influence a firm’s 

likelihood of experiencing data breaches. Our augmented RAT framework explicitly identifies 

externally introduced vulnerabilities as crucial determinants of firms’ suitability as cyberattack 

targets. Specifically, we investigate whether higher aggregated vendor-originated vulnerabilities, 

externally originating from third-party software providers, raise breach risks. We further propose 

that this effect is moderated by several key management factors such as patch availability, patch 

release time, media coverage, and vulnerability knowledge. The research model is illustrated in 

Figure 1.  

 

 
Figure 1.  Research Model 

As organizations increasingly pursue technological progress, they often rely on multiple 

external vendors to fulfill a wide range of technology requirements, from basic email services to 

complex ERP implementations. These partnerships are vital for operational success but also 

introduce additional security risks, broadening the organization’s attack surface (Charney et al., 

2011; Keskin et al., 2021). A recent survey of approximately 230,000 firms found that nearly 

98% had at least one third‐party partner who had experienced a breach, highlighting the 

widespread prevalence of third-party induced data compromise threats (Cyentia, 2023). One 
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primary form of vendor engagement is via Commercial Off‐the‐Shelf (COTS) software, which, 

despite its convenience and cost benefits, often functions as a “black box” that conceals hidden 

vulnerabilities (Chen et al., 2007; Özkan & Bulkan, 2019). In some cases, vulnerabilities in 

smaller embedded components within larger COTS products remain unpatched or overlooked, 

thereby compounding an organization’s risk profile (Boyens et al., 2022). Routine Activity 

Theory (Cohen & Felson, 1979) helps explain why these vendor-originated vulnerabilities are so 

consequential: unaddressed or undisclosed vulnerabilities create more “suitable targets” for 

cybercriminals (August et al., 2019; Jacobs et al., 2020). Although traditional application of RAT 

in cyber domain primarily focuses on internally-generated vulnerabilities, externally-driven 

vulnerability conditions often lie beyond a firm’s direct control (Boyson, 2014; Esther Kezia, 

2019; Yeboah‐Ofori & Opoku‐Akyea, 2019). Therefore, we propose our baseline hypothesis on 

which more sophisticated hypotheses are developed: 

H1. Firms with a higher aggregated vendor-originated vulnerability experience a higher 

data breach likelihood. 

While vendor-originated vulnerabilities are a core risk factor, the extent to which they 

lead to actual breaches hinges on whether they can be fully addressed by software vendor. Since 

software vulnerabilities typically stem from flaws in internal code and logical errors, firms are 

generally incapable of developing patches on their own (August & Tunca, 2008; Cavusoglu et 

al., 2008). Researchers have consistently underscored the stakes involved in patch availability. 

For instance, Chen, Boehm, and Sheppard (2007) show that official patches can remove entire 

sets of potential attack paths in Commercial Off‐the‐Shelf (COTS) systems, thereby limiting 

opportunities for successful intrusions. By contrast, if vendors fail to release patches or do not 

support older software versions, client firms must rely on temporary workarounds or remain fully 
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exposed (Özkan, 2019; Schrader, 2024). This lack of reliable patch availability creates “silent 

risks” that attackers can exploit, amplifying the harm of vendor‐originated vulnerabilities 

(Schryen, 2009). From our extended RAT perspective, prompt external remediation reduces a 

firm’s attractiveness as a target by eliminating the window of exploitation available to attackers 

(Wang et al., 2015). Therefore, effective external guardianship, manifested as reliable and timely 

patch availability, mitigates vendor-originated vulnerabilities before they materialize into 

breaches. Therefore, explicitly grounded in our augmented RAT framework, we propose: 

H2. Increased patch availability across all vendors of a firm moderates the relationship 

between vendor-originated vulnerabilities and data breach likelihood, such that higher patch 

availability weakens the relationship. 

Given the software dependency between software vendor and firms, the speed of its 

release is critical for minimizing the risks posed by vendor‐originated vulnerabilities. Although 

the importance of timely patching is well acknowledged, some vendors move swiftly to release 

patches, yet others do not (Schryen, 2009). Furthermore, the average patch release time was 

about 97 days in 2019, with enterprise software experiencing especially long delays (Roumani, 

2021). The variations imply that vendors face tradeoffs: rushing a patch can introduce new flaws, 

while deferring a fix prolongs vulnerability (Cavusoglu et al., 2004). The overall cost of patch 

development varies with vulnerability severity, vendor resources, and market expectations, 

complicating the decision process (Arora et al., 2006). Extending traditional RAT, our 

augmented framework explicitly positions patch release speed as an external guardianship 

mechanism provided by software vendors. Slow external guardianship prolongs vulnerability 

exposure, thereby increasing a firm's attractiveness as a cybercrime target. Consequently, when 

vendors delay patches, client firms must rely on cumbersome interim solutions or remain 
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continuously exposed (Özkan, 2019; Schrader, 2024). Prolonged unpatched periods increase the 

likelihood of successful intrusions, as each additional day without a patch increases exploitation 

opportunities (Ransbotham, 2010; Ransbotham & Mitra, 2009, Amelia, 2025). Thus, aligned 

explicitly with our extended RAT perspective, we propose: 

H3. Patch release time moderates the relationship between vendor-originated 

vulnerabilities and data breach likelihood, such that longer patch release time amplifies the 

relationship. 

In additional to vendors, infomediaries play a critical role in disseminating information 

about vendor-originated vulnerabilities, thereby influencing their impact on security outcomes. 

One main type of information is vulnerability knowledge, reflected in the number of references 

for each CVE entry, offers defenders rich technical guidance on vulnerability causes, 

implications, and remediation strategies (Poireault, 2024). Public repositories such as the U.S. 

National Vulnerability Database, vendor advisories, and security bulletins aggregate these 

references, helping firms assess risk, prioritize patches, and shore up defenses (Trabelsi, 2015; 

Dissanayake, 2022). Although attackers could theoretically mine this information for exploit 

development (Emmitt, 2020; Beardsley, 2022), they more often turn to underground forums for 

ready-made exploits. In practice, then, public vulnerability knowledge functions as an external 

extension of the “capable guardian” in Routine Activity Theory, with third-party actors 

supplying detailed, actionable remediation roadmaps that firms cannot generate internally. By 

shortening the time between disclosure and fix deployment, this external guardianship narrows 

the window of attacker opportunity and should weaken the link between vendor-originated 

vulnerabilities and actual breaches. Accordingly, we propose: 
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H4.  Vulnerability knowledge moderates the relationship between vendor-originated 

vulnerabilities and data breach likelihood, such that higher levels of vulnerability knowledge 

weaken that relationship. 

While vulnerability knowledge is essential for organizations to design and implement 

effective vulnerability management strategies (Nir 2023), other types of vulnerability 

information can be leveraged by malicious hackers who are seeking exploitation opportunities 

(Kannan & Telang, 2005; Crews, 2018). A central proposition in the Routine Activity Theory 

perspective is that a target’s “visibility” substantially influences its susceptibility to attack 

(Leukfeld & Yar, 2016). In the cybersecurity context, extensive media attention heightens the 

profile of a vulnerability, making it more appealing to potential attackers (Holt, 2020). Although 

technical disclosures may focus on patching procedures or risk assessments, mainstream news 

outlets and social media discussions often spotlight the severity and potential impact of a 

vulnerability (Zorz, 2019). Threat modeling and attack path analyses likewise find that when 

certain vulnerabilities gain “high popularity,” they become focal points for intensified scrutiny 

by cybercriminals (Chen, Boehm, & Sheppard, 2007). Moreover, Grover and Kohli (2013) 

caution that organizations should carefully manage how much information they expose to the 

public, since greater “system visibility” can inadvertently disclose sensitive details to 

adversaries. In the cybersecurity domain, attackers monitor diverse news sources, technology 

blogs, and social media for leads, making increased publicity even more hazardous (Liang et al. 

2025). Therefore, drawing on these insights, we propose: 

H5. Media coverage moderates the relationship between vendor-originated 

vulnerabilities and data breach likelihood, such that increased media coverage amplifies the 

relationship. 
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In summary, we propose hypotheses on how vendor-originated vulnerabilities impact 

firms’ data breach outcomes. Furthermore, we hypothesize how vendor-related contingent 

factors (i.e., patch availability and patch release time) and infomediary-related contingent factors 

(i.e., vulnerability knowledge and media coverage) moderate this impact. 

METHODOLOGY 

Data and Variables 
To test our hypotheses, we develop a unique dataset by merging multiple sources of 

archival data. Our primary data source for all independent variables came from two main 

databases: the National Vulnerability Database (NVD) which hosts all publicly known security 

vulnerabilities and Aberdeen’s Ci Technology Database (CiTDB), a comprehensive database on 

IT expenditures, technology adoption, vendor details, employee and IT staff information. CiTDB 

is widely used in Information Systems research (e.g., Xue et al., 2021, Kim et al., 2017). 

Dependent Variable – Data Breach Likelihood. A data breach is the intentional or 

unintentional release of secure or private or confidential information to an untrusted environment 

without appropriate authorization. It occurs when sensitive, protected, or private information is 

copied, communicated, viewed, stolen, or utilized by unauthorized agents. We obtained data 

breach information for all firms from the Privacy Rights Clearinghouse (PRC), an organization 

dedicated to engaging, educating, and empowering individuals to protect their privacy. Many 

studies have quantified data breaches using this source (e.g., Wang, 2024).  The dependent 

variable is a binary variable indicating breach occurrence each year. 

Independent Variable - Vendor-Originated Vulnerability. Firm’s vendor-originated 

vulnerability severity is the key independent variable in this study, representing the overall 

security weaknesses within a firm's technology ecosystem driven by vendors. To accurately 

measure this vulnerability severity, we integrate data from CiTDB and NVD. The CiTDB 
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provides detailed information on each firm’s technical systems, including system names, 

types/makes, and associated vendor names across various sites. Meanwhile, the NVD serves as a 

comprehensive repository of publicly known security vulnerabilities, offering detailed records 

for each vulnerability, such as descriptions, affected products, associated patches, references, and 

their respective Common Vulnerabilities and Exposures (CVE) identifiers. Each CVE in the 

NVD is assigned a Common Vulnerability Scoring System (CVSS) score, which quantifies the 

severity of the vulnerability on a scale from 0 to 10. To calculate the score for vendor-originated 

vulnerability (!"!	 ) for each firm # annually, we first identify all systems and their corresponding 

vendors at each site using CiTDB data. We then match these vendors to the NVD to identify all 

associated CVEs and retrieve the corresponding CVSS scores for each CVE. The score for VoV 

is obtained by averaging CVSS scores of all CVE’s associated with all vendors at each site and 

then further aggregating this average across all sites within the firm for each year. It can be 

represented as below  

!"!" 	=
1
'"
(	((	)!**#,%,& 		

'!,#

&()

*!

%()

+

#()
																			(1)	 

Where	!"!" 	is average score for Vendor-Originated Vulnerability for firm #, S is Total 

number of sites for the firm #, !#	is Total number of vendors used at site -, .#,%	Total number of 

CVEs associated with vendor / at site -,  )!**#,%,& is the CVSS score for the 0-th CVE of vendor 

/ at site -, '" is Total number of CVEs for firm #. 

Controls: Control variables were derived from the CiTDB, including the number of sites, 

IT budget, Revenue, and employee size. Collectively, firms in our sample experienced 1158 

breach incidents. Overall, our dataset included information for 13,005 American firms from 2010 

to 2018. Of these firms, 683 firms were public, and the remaining were private. After aligning 
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data between CiTDS and breach sources, we constructed a unique dataset consisting of 115,425 

firm-year observations. Appendix A, Table A1 shows the pairwise correlations between the 

variables. All variables' sources and measures are summarized in Appendix A, Table A2. Table 

A3 presents descriptive statistics of all variables. 

Moderator 1 – Patch Availability2.  To measure patch availability, we calculated an 

aggregate patch availability score for each firm annually. For every CVE identified within a 

firm’s technology ecosystem, we determined whether a patch was available by referencing the 

NVD’s “References” section, which is updated upon the release of a patch (Please see 

Appendix D for more comprehensive details on the conceptualization of Patch Availability). If a 

patch was available for a particular CVE, we assigned a value of 1; otherwise, we assigned a 

value of 0. These binary indicators were then aggregated across all CVEs, vendors, and sites 

within each firm for each year, mirroring the aggregation process used for the Vendor-

Vulnerability Score. This firm-level patch availability score captures the overall availability of 

patches relative to the firm’s total vendor-vulnerabilities, providing a comprehensive measure of 

how effectively a firm could address its security weaknesses through patching across its entire 

technology ecosystem. Although not perfectly efficient, this information in NVD is still utilized 

on daily basis to find information on patches from across the world (Wunder et al., 2024). The 

patch availability equation is: 

1234ℎ	6/2#728#7#39" 	=
∑ 	1(1234ℎ&)		,$
&()

'"
																			(2) 

 
2 We use an example to demonstrate how to measure Patch Availability. For instance, if a firm faces 100 
vulnerabilities in a given year and 85 of them have an available patch, the Patch Availability measure for that firm is 
85/100 ≈ 0.85. 
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Where '" is the total number of vulnerabilities (CVEs) that firm i faces in a given year, 

and  1(1234ℎ&) is an indicator function that equals 1 if a patch is available for vulnerability j and 

0 otherwise. This measure ranges from 0 to 1, representing the proportion of CVEs that have 

patches. 

Moderator 2 – Patch Release Time. We measured the time lag between the publication 

of each vulnerability and the availability of its corresponding patch, as indicated by the “patch” 

tag in the NVD “References” section (Please see Appendix D for more comprehensive details on 

the conceptualization of Patch availability speed). For every CVE identified within a firm’s 

technology ecosystem, we calculated the number of days between the CVE’s publish date and 

the date a patch became available. These time lags were then aggregated across all CVEs, 

vendors, and sites within each firm annually, mirroring the aggregation process used for the 

Vendor-Originated Vulnerability Score and Patch Availability Score. This firm-level patching 

speed score captures the critical window during which a firm’s ecosystem remains vulnerable to 

potential exploitation. A shorter patching speed score indicates a more rapid response to 

vulnerabilities, thereby minimizing the time frame for potential attacks, whereas a longer score 

suggests slower patching practices and increased exposure risk. The patch release time is 

represented as below. 

1234ℎ	<=7=2-=	>#?=" =
∑ 	>& 	,$
&()
'"

																			(3) 

Where '" is the total number of vulnerabilities (CVEs) that firm i faces in a given year, 

and  >& 	represent the time (in days) between vulnerability j’s publish date and the date its patch 

becomes available. Then the firm-level Patch Release Time measure is simply the average of 
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these time lags3: A higher 1234ℎ	<=7=2-=	>#?=" 	indicates that patches become available more 

slowly (delayed) on average, increasing a firm’s window of exposure. 

Moderator 3 – Vulnerability Knowledge. To measure vulnerability knowledge, we 

counted the number of information/resources available for each vulnerability (Please see 

Appendix D for more comprehensive details on the conceptualization of Vulnerability 

Knowledge). Specifically, we utilized the number of hyperlinks in the “References to Advisories, 

Solutions, and Tools” section of each vulnerability entry in the NVD database. These hyperlinks 

direct users to relevant advisories, patches, or related solutions, indicating the breadth of external 

resources available to remediate vulnerabilities. For every CVE identified within a firm’s 

technology ecosystem, we counted the number of references provided in this section. These 

counts were then aggregated across all CVEs, vendors, and sites within each firm annually, 

mirroring the aggregation processes used for the Firm Vendor-Originated Vulnerability Score 

and Patch Availability Score. This firm-level vulnerability knowledge score captures the overall 

knowledge of external guidance and tools relative to the firm’s total vulnerabilities. These 

references are among the most widely used sections of a CVE entry in NVD, with studies 

showing that 85 percent of practitioners rely on advisory and patch information for their security 

workflows (Miranda, 2023). The average vulnerability knowledge4 is represented as below. 

!A7B=C28#7#39	DB"E7=FG=" =
∑ 	!& 	,$
&()
'"

																			(4) 

 
3 For instance, if a firm has 5 CVEs with time lags of 3, 5, 6, 10, and 11 days, then !"#$ℎ	'())*%= 
(3+5+6+10+11)/5=7 days. 
4 For instance, if a firm has 5 vulnerabilities with reference hyperlink counts of 2, 3, 3, 5, and 1, then 
+,-.)/"01-1#2	3.45-)*6)%=(2+3+3+5+1)/5=2.8. A larger value indicates that a firm’s vulnerabilities tend to have 
more comprehensive external documentation, potentially aiding remediation/aiding attackers. 
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Where '" is the total number of vulnerabilities (CVEs) that firm i faces in a given year, and  

!&represent the number of references (hyperlinks) listed for vulnerability j. A higher 

!A7B=C28#7#39	DB"E7=FG=" 	 indicates that the firm’s vulnerabilities are accompanied by more 

comprehensive external documentation and advisories. 

Moderator 4 – Media Coverage. To measure media coverage that a firm’s 

vulnerabilities receive, we computed a media coverage score by counting the number of web 

articles mentioning each CVE using the Google Search API. The search window extended from 

one month before the vulnerability’s publication date to six months after, capturing instances 

where vulnerability details circulated prior to their formal listing in the NVD. These articles 

include sources such as hacking forums, GitHub pages, and technical news outlets, where 

discussions may involve exploitation details, root causes, fixes, and attack methodologies. 

Additionally, typical media articles can popularize CVEs globally, increasing their visibility. We 

then aggregated the total number of articles across all CVEs, vendors, and sites for each firm 

annually, resulting in a firm-level media coverage metric. The media coverage metric can be 

represented as below5: 

I=F#2	)"/=C2G=" 	=
∑ 	I& 	,$
&()
'"

																			(4) 

Where '" is the total number of vulnerabilities (CVEs) that firm i faces in a given year, and  I& 

represent the number of articles referencing vulnerability j. A higher I=F#2	)"/=C2G=" implies 

that, on average, a firm’s vulnerabilities received more public and industry attention.   

 
5 For instance, if a firm has 5 vulnerabilities with article counts of 0, 2, 2, 10, and 6, then Media Coverage is 
calculated as (0+2+2+10+6)/5=4. Because the Google Search API covers both mainstream and niche outlets, some 
widely publicized CVEs yielded extremely large numbers of results, raising the overall average of this measure. 
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Control Variables. CiTDB provides essential firm metrics such as Number of 

Employees, Revenue, and Number of Sites, which act as proxies for firm size and profitability. 

We include Revenue as a control variable because hackers often target profitable and reputable 

firms (Dahmash et al., 2009). The Number of Employees accounts for variations in firm size, 

while the Number of Sites reflects the geographic and operational spread of a firm Additionally, 

we control for the number of CVEs and the number of systems a firm possesses. Controlling for 

number of CVEs distinguishes the impact of a firm’s vendor-originated vulnerabilities from the 

total number of vulnerabilities, which captures volume. Similarly, controlling for the number of 

systems accounts for technological scale differences across firms, ensuring that our findings 

reflect true relationships rather than being influenced by larger infrastructures.  Lastly, a firm's IT 

budget reflects its commitment to technological assets and significantly influences its security 

posture (Sen & Borle, 2015). Including the IT budget as a control variable allows us to account 

for the resources allocated to security measures.  

Model Specifications 
We employ the following Linear Probability Model (LPM) to test the hypothesis that a 

firm’s vendor-originated vulnerabilities lead to a higher likelihood of data breaches, moderated 

by patch availability, patch release time, vulnerability knowledge, and media coverage. 

9",- = J. + J)L",- + J/I",- + J0	(L",- ∙ I",-) +(J1)",- + N" + O- + P",-																	(3) 

where the dependent variable 9",- is the binary variable indicating if firm i had a breach 

event year t. L",- is the independent variable - the firm’s average vendor-originated 

vulnerabilities in year t. I",- is the moderator – the moderators, including patch availability, 

patching speed, media coverage, and vulnerability knowledge of firm i in year t.  J1)",-represents 

a collection of time-varying control variables. N" represents firm fixed effects, while O- denotes 
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year-fixed effects. P",- is the idiosyncratic error term. We control for both firm and year fixed 

effects to address concerns about omitted variables related to firm-specific attributes and 

temporal shocks. 

RESULTS 

We begin by inspecting the model-free relationship between firm’s vendor-originated 

vulnerabilities and data breach likelihood across all firms over time (A detailed model-free 

descriptive and trend analysis of our data is available in Appendix D). As shown in Figure 2, 

there appears to be a general trend where an increase in firms' vendor-originated vulnerabilities is 

associated with a corresponding rise in the occurrences of data breaches. This visual correlation 

suggests that higher vulnerability levels in firms' technological ecosystems may contribute to an 

elevated risk of data breaches.  

Main effect: We then evaluate the main and interaction models to test the hypothesis that 

higher vendor-originated vulnerabilities lead to higher data breach likelihood. Table 1 presents 

the results from our Linear Probability Model. To account for potential heteroscedasticity, we 

estimate clustered robust standard errors for the regression coefficients at the firm level, ensuring 

more reliable inference (Wooldridge, 2010). The model also controls both firm and year fixed 

effects. Importantly, we control for cumulative breach count, capturing a firm’s historical breach 

incidents, as a control variable across all models. This accounts for potential path dependency, 

where past breaches may influence both vulnerability management and subsequent breach 

likelihood. We also control for the firm’s historic vendor-originated vulnerability levels, 

accounting for prior patterns in our key independent variable. This helps address endogeneity by 

acknowledging that previously high or low vulnerabilities may systematically influence current 

security outcomes. As seen in Table 1, a higher Firm vendor-originated vulnerability score is 

associated with higher data breach likelihood (β=0.079, p<0.05), corroborating our Hypothesis 1. 
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Next, we introduce all our moderators and other firm attributes as controls and see similar results 

(β=0.093, p<.05), further strengthening our H1. 

 

Figure 2: Firm Vendor-Originated Vulnerability vs YoY breach Trend 

Interaction effects: We then introduce our moderators and test the moderating effect of 

patch availability, patch release time, vulnerability knowledge, and media coverage.  First, as 

seen in Table 1, patch availability exhibits a significant negative interaction effect on data 

breaches (β = −1.142, p < 0.01), supporting H2. This finding demonstrates that firms whose 

vendors provide patches for a larger proportion of vulnerabilities face fewer breaches, suggesting 

that more comprehensive patch coverage alleviates the damaging effects of vendor-originated 

vulnerabilities. 

Second, patch release time shows a significant positive interaction coefficient (β = 0.056, 

p < 0.01), consistent with H3. Longer patch release intervals extend the window during which 

attackers can exploit unpatched vulnerabilities, thereby increasing firms’ breach risk. 
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Turning to infomediary‐related factors, vulnerability knowledge has a negative effect 

on breach likelihood (β = −0.066, p < 0.05). This supports H4 and a higher level of knowledge 

on vulnerabilities assist defenders by enabling more efficient and timely remediation. 

Finally, we find that media coverage is positively associated with data breaches (β = 

0.049, p < 0.01), supporting H5. This underscores that widespread public discussion and media 

attention for vendor-originated vulnerabilities can attract malicious actors’ attention, effectively 

complicating firms’ mitigation strategies and heightening the probability of a breach. 

Table 1. Hypothesis testing results 
 

 
 
DV: Data 
Breaches  

Base Model Interaction 
(1) (1.1) (2) (3) (4) (5) 

Base 
Model 

Base 
Model 
with 

Controls 

Patch 
Availability 

Patch  
Release 

Time 
Vulnerability  
Knowledge 

Media  
Coverage 

Vendor-Originated 
Vulnerability 
(VoV) 

0.079* 
(0.034) 

0.093* 
(0.037) 

0.171** 
(0.044) 

-0.260* 
(0.109) 

0.530**  
(0.159) 

-0.414+  
(0.249) 

Patch Availability  -0.846+ 
(0.504) 

5.183*  
(2.115)    

VoV × Patch 
Availability   -1.142** 

(0.405)    

Patch Release 
Time  0.016  

(0.034)  
-

0.312** 
(0.100) 

  

VoV × Patch 
Release Time    0.056** 

(0.017)   

Media Coverage  0.064  
(0.042)    -0.192  

(0.134) 
VoV × Media 
Coverage      0.049*  

(0.024) 
# Vulnerability 
Knowledge (VK)  -0.109 

(0.095)   0.261 
(0.172)  

VoV × 
Vulnerability 
Knowledge 

    -0.066** 
 (0.024)  

Cumulative 
Breach 

-
0.245** 
(0.011) 

-
0.245** 
(0.011) 

-0.245** 
(0.011) 

-
0.245** 
(0.011) 

-0.245** 
 (0.011) 

-0.246**  
(0.011) 

Historic VoV -0.002 
(0.032) 

-0.003 
(0.032) 

0.001  
(0.032) 

-0.003 
(0.032) 

-0.000 
(0.032) 

-0.003 
 (0.032) 

Log IT Budget 0.340** 
(0.050) 

0.336** 
(0.050) 

0.336** 
(0.050) 

0.335** 
(0.050) 

0.337**  
(0.050) 

0.335**  
(0.050) 
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Log Employees 
-

0.335** 
(0.103) 

-
0.348** 
(0.103) 

-0.338** 
(0.103) 

-
0.333** 
(0.103) 

-0.342** 
 (0.103) 

-0.348** 
 (0.103) 

Log Revenue -0.091+ 
(0.047) 

-0.093* 
(0.047) 

-0.089+ 
(0.047) 

-0.090+ 
(0.047) 

-0.089+  
(0.047) 

-0.094* 
 (0.047) 

Log Num of Sites 0.214+ 
(0.121) 

0.212+ 
(0.122) 

0.208+ 
(0.121) 

0.212+ 
(0.121) 

0.211+ 
 (0.121) 

0.214+ 
 (0.122) 

Log CVE Count 0.209** 
(0.046) 

0.325** 
(0.085) 

0.214** 
(0.049) 

0.196** 
(0.049) 

0.280**  
(0.083) 

0.302**  
(0.084) 

Firm Fixed Effects Yes Yes Yes Yes Yes Yes 
Year Fixed Effects Yes Yes Yes Yes Yes Yes 
R-squared 
(Adjusted) 0.165 0.164 0.165 0.165 0.165 0.164 

Log Likelihood -
361827 -360185 -361724 -

361367 -361823 -360183 

Observations 101,721 101,241 101,690 101,577 101,721 101,241 
Note: + p < 0.1, * p < .05, ** p < .01, *** p < .001. Values in parentheses are robust standard errors clustered at the firm level. 
Coefficients reflect percentage point changes as the dependent variable was multiplied by 100 for readability 
 

 VENDOR-ORIGINATED VULNERABILITIES – UNDERLYING DYNAMICS 

To understand precisely how vendor-originated vulnerabilities contribute to data breach 

risks, we examined the two critical subcomponents of the overall CVSS score separately: (a) 

Exploitability Score, reflecting the ease of exploiting a vulnerability, and (b) Impact Score, 

reflecting the potential damage to confidentiality, integrity, and availability (CIA). 

While our main analysis confirms aggregated CVSS scores predict breaches, unpacking 

the CVSS score into these distinct components allows us to clarify the practical significance of 

each dimension. This understanding enables firms to more effectively prioritize vulnerability 

remediation efforts- a strategy regarded as more effective than merely increasing remediation 

capacity (Cyentia Institute & Kenna Security, 2022). Our results show that the aggregate 

Exploitability Score shows a marginally significant positive effect on data breaches6. While this 

suggests vendor-originated vulnerabilities easier to exploit do somewhat increase breach risk, the 

relatively weak statistical significance indicates exploitability alone may not be the primary 

driver. One explanation might be that firms can effectively mitigate easily exploitable 

 
6 Detailed results are available upon request.  
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vulnerabilities once identified. Conversely, the Impact Score strongly and positively affects data 

breach likelihood, emphasizing that attackers prioritize vendor-originated vulnerabilities capable 

of inflicting significant damage. Thus, vulnerabilities with higher potential impact pose greater 

threats to organizations and should be prioritized in cybersecurity strategies. Furthermore, we 

conduct analyses on the interacting impact of these scores and other key actions of vendors and 

infomediaries. The results reveal that the interaction effects for Exploitability Scores generally 

align with the overall CVSS results, whereas Impact Score interactions were mostly non-

significant except for vulnerability knowledge, underscoring the complexity in managing high-

impact vendor-originated vulnerabilities. 

VULNERABILITY THRESHOLD IDENTIFICATION 

All organizations possess a base degree of vulnerability in their technology infrastructure 

because of unavoidable vendor reliance and outsourcing requirements. While every CVSS score 

represents a potential weakness, firms cannot realistically eliminate all vulnerabilities; our goal is 

therefore to identify an alarm point (i.e., threshold)- a level of vulnerability that remains 

manageable versus one that signals a “point of no return,” beyond which defenses rapidly 

degrade and breach risk escalates sharply. Organizations face substantial practical constraints in 

addressing the vulnerabilities within their technology ecosystems due to limited cybersecurity 

resources and operational complexities. Consequently, identifying a meaningful vulnerability 

threshold becomes crucial. While the official CVSS document categorizes vulnerabilities with a 

score of 4.0 as the threshold between "Low" and "Medium/High" severity (NVD, 2025), we let 

the empirical structure of our data determine a robust and practically meaningful vulnerability 

threshold. Initially, we split firms at the median CVSS score (4.66) into low and high 

vulnerability groups, providing a basic distribution-driven reference point. However, to ensure 
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the validity and practical utility of this threshold, we further employed two independent, 

nonparametric machine learning approaches7 explicitly designed for threshold identification. 

First, we applied a single-split decision tree (Banerjee & McKeague, 2007; Breiman et 

al., 2017), a method well suited to finding a “break” in a continuous predictor. In our case, the 

tree tests every possible vulnerability score as a split, and for each candidate it fits two simple 

predictions: one average breach rate for firms at or below that score and another for firms above 

it. It then calculates the mean squared error (MSE) between those group-specific averages and 

each firm’s actual breach rate, and picks the split that makes that MSE as small as possible. This 

procedure identified a threshold of 4.63 (Figure B1, Appendix B). To further validate our 

decision-tree result, we implemented an exhaustive sum-of-squared-errors (SSE) grid search 

(Hansen, 1999; Yeh et al., 2010). This approach also pinpointed a similar threshold at 4.64. 

CAUSAL IDENTIFICATION 

Although our main results indicate that higher vendor-originated vulnerabilities increases 

data breach likelihood, potential confounders and unobserved heterogeneity might bias these 

findings. To address these concerns and strengthen causal inference, we employ a Difference-in-

Differences (DiD) approach, leveraging the identified vulnerability threshold as a plausibly 

exogenous “shock”. Specifically, firms crossing this “threshold” serve as the treatment group, 

while firms that do not cross it form the control group. This design provides a quasi-experimental 

setting to evaluate whether crossing the vulnerability threshold causally increases breach 

occurrence. 

To ensure robustness, we first used Coarsened Exact Matching (CEM) to pair firms by 

year and industry, and subsequently applied Propensity Score Matching (PSM) to additionally 

 
7 The decision-tree threshold approach was implemented using the DecisionTreeRegressor from scikit-learn (Python), 
and the SSE threshold identification through a custom calculation built using pandas and NumPy (Python). 
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align firms on characteristics such as employee count, revenue, and IT budget. We applied one-

to-one (1:1) matching, yielding a final matched sample of 1,088 firms. Standardized mean 

differences after matching were below the recommended threshold of 0.1 (Zhang, Kim et al. 

2019), confirming good covariate balance. The common support condition was clearly satisfied, 

as illustrated by overlapping propensity score distributions in density plots (Appendix B, Figures 

B3 & B4). 

We then conducted DiD analysis using the LPM model as shown below. 

9",- = N + J	(>C=23" ∗ 	1"-3"-) + R" + O- + P",-				(4) 

Where 9",- is the data breach occurrence for firm i in year t, N is the intercept, J is the 

coefficient of interest, measuring the differential effect of crossing the vulnerability threshold. R" 

captures firm-specific fixed effects, O- captures year-specific effects (year fixed effects) and P",- 

is the error term. >C=23" is a binary indicator equal to 1 if firm i crosses the vendor-originated 

vulnerability threshold (treatment group) and 0 otherwise (control group). 1"-3"- is time-varying 

indicator (1 in years t after the crossing year for treated firms, 0 before; always 0 for controls). 

Thus, the interaction term (>C=23" ∗ 	1"-3"-) captures the differential impact on data breach 

likelihood specifically attributable to crossing the threshold. As seen in Table 4, the average 

treatment effect is significant (β=1.031, p<.05) & (β=1.032, p<.05) with PSM 1:1 and MDM 1:1 

Matching respectively, suggesting that firms crossing critical vendor-originated vulnerability 

threshold leads to a higher likelihood of data breaches.  

While the DiD have been widely used to identify causal effects of staggered events, 

recent econometrics methodology research shows that it can yield biased results because the 

estimation of treatment effects includes a problematic comparison between the treatment group 

and the already treated group (Goodman-Bacon, 2021).  To correct the bias, we follow an 
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approach proposed by Callaway & Sant’Anna (2021) to further validate the LPM results. The 

analysis shows that the average treatment effect on the treated (ATT) is still significant 

(ATT=1.886, p<0.05), confirming the effect of firms’ vendor-originated vulnerabilities on data 

breaches. 8 Further, a relative time model based on Callaway and Sant’Anna (2021) shows that 

the treatment effects before the event (Firms crossing the CVSS threshold) do not differ from 

zero, and several treatment effects after the event differ from zero, thus supporting the parallel 

trend assumption (Appendix B, Figure B5). Overall, these results indicate that there is likely a 

causal relationship between a firm’s vendor-originated vulnerabilities and the likelihood of data 

breaches. 

Table 4: Difference-in-difference analysis on matched data 

Base model 
 
  

 Difference-in-difference 
Threshold Analysis Base Model Interaction 

Low 
Vulnerability 

High 
Vulnerabilit

y 

PSM 
+CEM 

1:1 

MDM 
+CEM 

1:1 

Patch 
Availability 

Patch 
Release 
Time 

Vulnerabilit
y knowledge 

Media 
Coverage 

 (6.1) (6.2) (6.3) (6.4) (6.5) (6.6) (6.8) (6.7) 

Vendor 
Originated 
Vulnerability 
(VoV) 

-0.275  
(0.181) 

0.119* 
 (0.051)       

Threshold × 
Post (DiD 
Effect) 

  1.031* 
(0.502) 

1.032* 
(0.494) 

0.302* 
(0.700) 

-4.352* 
(1.898) 

15.546** 
(3.403) 

-1.212* 
(2.430) 

Moderator       9.002* 
(3.931) 

-0.213 
(0.304) 

2.242** 
 (0.623) 

0.498+ 
(0.268) 

DiD*Moderato
r     -9.134* 

(4.150) 
0.591* 
(0.284) 

-2.408**  
(0.522) 

0.035 
(0.226) 

Log IT Budget 0.458** 
(0.088) 

0.224** 
(0.058) 

-0.105 
(0.226) 

-0.102 
(0.225) 

0.370 
 (0.241) 

0.346 
(0.240) 

0.343 
 (0.241) 

0.359 
(0.242) 

Log 
Employees 

-0.472*  
(0.187) 

-0.294*  
(0.129) 

0.102 
(0.594) 

0.104 
(0.568) 

0.468 
 (0.568) 

0.444 
(0.567) 

0.454 
 (0.572) 

0.444 
(0.575) 

Log Revenue -0.088  
(0.079) 

-0.051 
 (0.059) 

-0.208 
(0.197) 

-0.202 
(0.197) 

-0.245 
(0.193) 

-0.229 
(0.193) 

-0.219 
 (0.192) 

-0.229 
(0.195) 

Log Num of 
Sites 

0.184  
(0.185) 

0.119  
(0.189) 

1.211* 
(0.577) 

1.213* 
(0.574) 

1.258* 
(0.575) 

1.301* 
(0.574) 

1.270* 
 (0.575) 

1.309* 
(0.574) 

 
8 We utilize ‘csdid’ module in stata. 
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Log CVE 
Count 

0.313** 
(0.079) 

0.128* 
 (0.063) 

0.154 
(0.186) 

0.145 
(0.188) 

0.264 
 (0.217) 

0.048 
(0.229) 

0.371 
 (0.353) 

0.314 
(0.244) 

Firm Fixed 
Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Year Fixed 
Effects Yes Yes Yes Yes Yes Yes Yes Yes 

R-squared 
(Adjusted) 0.125 0.177 0.121 0.122 0.238 0.238 0.240 0.238 

Log Likelihood -172647 -172734 -36109 -36071 -31242 -31231 -31241 -31132 

Num of Firms 11737 11888 1,088 1,088 1,075 1,075 1,075 1,074 
Note: + p < 0.1, * p < .05, ** p < .01, *** p < .001. Values in parentheses are robust standard errors clustered at the 
firm level. PSM: propensity score matching; MDM: Mahalanobis distance matching; CEM: coarsened exact 
matching. Coefficients reflect percentage point changes as the dependent variable was multiplied by 100 for 
readability 
 

CONCLUSION 

This study extends Routine Activity Theory by empirically examining how a firm’s 

external vendor-originated vulnerabilities, captured through aggregated CVSS scores, influences 

data breach likelihood. By mapping vulnerabilities from the NVD to each firm’s specific vendors 

and active systems, we construct a measure of firm-level technology risk that highlights the 

critical role of vulnerability severity in shaping breach outcomes. Our findings show that higher 

vendor-originated vulnerabilities significantly increase the likelihood of data breaches, with a 

distinct threshold effect emerging around a CVSS score of 4.6. Firms exceeding this threshold 

face sharply elevated breach risks, emphasizing the need for consistent vulnerability monitoring 

and rapid patch deployment. We also find that patch availability, faster patch deployment, and 

vulnera bility knowledge, can help mitigate these threats, while media attention to CVE’s 

exacerbates the cyber risk. In addition, metrics related to confidentiality and availability within 

the CVSS framework pose particularly high risks, underlining the multifaceted nature of 

vulnerability management.  

Our study makes several important contributions to research and practice in cybersecurity 

risk management. Theoretically, we contribute to the cybersecurity risk management literature 

by extending Routine Activity Theory to explicitly recognize the critical role external entities 
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play in shaping organizational vulnerability and guardianship.  Additionally, we advance 

theoretical understanding by empirically examining the interactions among RAT’s core 

dimensions (suitable targets, capable guardianship, and target visibility) in the specific context of 

vendor-originated vulnerabilities.  Empirically, our approach systematically links vendor-

originated vulnerabilities to organizational technology ecosystems, enabling deeper analysis of 

firm-level cybersecurity outcomes.  

Beyond its contribution to research, our study also provides practical implications for 

vulnerability management. First, our findings support the effectiveness of CVSS in assessing 

cybersecurity risks and demonstrate the values of systemically mapping vendor-originated 

vulnerabilities to organizational IT systems. Second, our findings offer guidance for security 

resources allocation by identifying a threshold effect and key dimensions of CVSS. Third, our 

study highlights the importance of coordination efforts in vulnerability management by 

empirically examining the role of software vendors and infomediaries in impacting breach risks 

induced by vendor-originated vulnerabilities. 

Our study has certain limitations that warrant acknowledgment. While our research relies 

on detailed data from the NVD, this source is not entirely free from practical constraints. First, 

although the NVD’s publish date approximates when a vulnerability becomes publicly known, it 

may not always align perfectly with the exact initial disclosure date. A second limitation 

involves how we map firms’ systems to known vendor-originated vulnerabilities. Future studies 

might expand this framework by mapping vulnerabilities to particular system versions or specific 

business units. Third, while our firm-level average CVSS score provides a broad gauge of the 

severity of vendor-originated vulnerabilities, it may not fully address real-time patch 

prioritization needs. 
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APPENDIX A 

Table A1: Correlation among all variables 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

(1) Year-on-Year Breach Indicator 1 
                    

(2) Vendor-Originated Vulnerability -0.027* 1 
                   

(3) Patch Average 0.002 -0.035* 1 
                  

(4) Avg Exploitability Score -0.037* 0.429* 0.068* 1 
                 

(5) Avg Impact Score -0.022* 0.821* -0.153* 0.193* 1 
                

(6) Avg Access Vector Score -0.040* 0.360* -0.009* 0.844* 0.177* 1 
               

(7) Avg Access Complexity Score -0.028* 0.295* -0.109* 0.282* 0.377* 0.361* 1 
              

(8) Avg Authentication Score -0.008* 0.186* -0.008* 0.195* 0.209* 0.169* 0.197* 1 
             

(9) Avg Obtain All Privileges Score -0.005 0.181* -0.032* 0.085* 0.193* 0.070* 0.188* 0.136* 1 
            

(10) Avg Confidentiality Impact Score -0.031* 0.528* -0.171* 0.258* 0.676* 0.285* 0.519* 0.208* 0.155* 1 
           

(11) Avg Integrity Impact Score -0.028* 0.556* -0.113* 0.227* 0.604* 0.249* 0.405* 0.190* 0.158* 0.490* 1 
          

(12) Avg Availability Impact Score -0.022* 0.769* -0.096* 0.190* 0.909* 0.184* 0.313* 0.216* 0.169* 0.556* 0.544* 1 
         

(13) Log Avg Patch Release Time -0.007* 0.028* -0.184* 0.024* 0.065* 0.053* 0.148* -0.139* 0.045* 0.253* 0.014* 0.016* 1 
        

(14) Log Media Articles Count 0.000 0.071* -0.181* 0.056* 0.177* -0.053* -0.016* -0.018* -0.009* 0.097* 0.038* 0.137* 0.246* 1 
       

(15) Log Vulnerability Knowledge -0.005 0.196* 0.349* 0.169* 0.141* 0.079* 0.132* 0.006 0.056* 0.117* 0.211* 0.144* 0.242* 0.106* 1 
      

(16) Log Num of Records Breached 0.659* -0.020* -0.007* -0.029* -0.020* -0.031* -0.023* -0.011* -0.003 -0.025* -0.022* -0.021* 0.003 0 -0.009* 1 
     

(17) Log IT Budget 0.086* -0.239* 0.099* -0.227* -0.236* -0.268* -0.258* -0.079* -0.028* -0.296* -0.283* -0.224* -0.106* -0.032* -0.031* 0.061* 1 
    

(18) Log Employees 0.092* -0.244* -0.037* -0.260* -0.222* -0.304* -0.261* -0.091* -0.032* -0.274* -0.273* -0.225* 0.002 0.029* -0.091* 0.076* 0.794* 1 
   

(19) Log Revenue 0.077* -0.234* 0.016* -0.218* -0.228* -0.267* -0.235* -0.085* -0.025* -0.251* -0.241* -0.235* -0.015* -0.061* -0.059* 0.064* 0.778* 0.793* 1 
  

(20) Log Total Sites 0.074* -0.138* 0.012* -0.137* -0.123* -0.157* -0.146* -0.043* -0.023* -0.146* -0.163* -0.125* -0.017* 0.031* -0.042* 0.058* 0.458* 0.483* 0.323* 1 
 

(21) Log CVE Count 0.044* -0.238* 0.368* -0.252* -0.280* -0.275* -0.320* -0.216* -0.096* -0.363* -0.239* -0.249* 0.066* -0.003 0.676* 0.028* 0.356* 0.287* 0.291* 0.157* 1 

*** p<0.01, ** p<0.05, * p<0.1
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Table A2: Summary of measures for all variables 

Variable Measure Source  

Year-on-Year 
Breach Indicator 

Binary indicator for data breach occurrence recorded by PRC, for a given 
firm in a given year.  

PRC, IDTRC, 
Verizon DBIR 

Num of Records 
Breached 

Total number of data records lost or impacted for a given firm in a given 
year. 

PRC, IDTRC, 
Verizon DBIR 

Vendor-
Originated 
Vulnerabilities 

An aggregate CVSS score reflecting a firm’s overall vendor-originated 
vulnerability level. Computed by aggregating the CVSS scores of all 
relevant CVEs (vulnerabilities) across all vendors and sites used by the 
firm for each year. A higher value indicates that the firm was more 
vulnerable overall due to external vendors. 

NIST NVD 

Patch Average Aggregate percentage of the number of patches available calculated across 
all vulnerabilities (CVEs) across all vendors and sites used by the firm for 
each year. A higher percentage indicates more patches were available for 
vendor-originated vulnerabilities. 

NIST NVD 

Avg Patch 
Release Time 

Aggregate score of the days  taken to release patches calculated across all 
vulnerabilities (CVEs) in all vendors adapted across all sites for each firm 
per year. Larger values indicate longer patch-release times 

NIST NVD 

Media Coverage Aggregate score of media articles counts referencing the vulnerabilities 
(CVEs) contained in vendors adapted across all sites for each firm per 
year. A higher value indicates broader or more frequent media coverage, 
suggesting potentially greater public awareness or severity 

Computed 
using Google 
Web Search 
API 

Vulnerability 
Knowledge 
(References 
Count) 

Aggregate score of the number of references available on the NVD website 
calculated across all vulnerabilities (CVEs) from all vendors adopted 
across all sites for each firm per year (e.g., links to vendor advisories, 
security mailing lists, or other references). A higher value indicates a 
broader or more diverse set of external information sources associated with 
those vendor-originated vulnerabilities. 

NIST NVD 

Exploitability9 
Score 

Aggregate CVSS “exploitability” component score, aggregated across all 
vulnerabilities (CVEs) in all vendors adapted across all sites for each firm 
per year. Higher values suggest that vulnerabilities are easier to exploit. 

NIST NVD 

Impact Score Aggregate CVSS “impact” component score, aggregated across all 
vulnerabilities (CVEs) in all vendors adapted across all sites for each firm 
per year. Higher values indicate more damaging vulnerabilities (e.g., data 
loss, system downtime). 

NIST NVD 

Access Vector Aggregate CVSS “access vector” component score, aggregated across all 
vulnerabilities (CVEs) in all vendors adapted across all sites for each firm 
per year. Reflects whether vulnerabilities can be exploited locally, via 
adjacent network, or over the internet. Higher scores correspond to more 
remote or network-based exploitability (e.g., over the internet), while 

NIST NVD 

 
9 Some CVSS sub-dimensions (e.g., Access Vector, Access Complexity) were originally categorical. We 

converted these categories to numerical values for aggregation and analysis. See Appendix C, Table C1 for the 
specific coding details. 
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lower scores indicate more localized exploitation (e.g., direct physical or 
on-device access) 

Access 
Complexity 

Aggregate CVSS “access complexity” component score, aggregated across 
all vulnerabilities (CVEs) in all vendors adapted across all sites for each 
firm per year. Higher scores mean exploit requires more effort/conditions 
to succeed. 

NIST NVD 

Authentication Aggregate CVSS “authentication” component score, aggregated across all 
vulnerabilities (CVEs) in all vendors adapted across all sites for each firm 
per year. Higher scores generally indicate fewer (or no) authentication 
requirements, making exploitation easier, whereas lower scores suggest 
more stringent authentication needs. 

NIST NVD 

Obtain All 
Privileges 

Aggregate CVSS “obtain all privileges” component score, aggregated 
across all vulnerabilities (CVEs) in all vendors adapted across all sites for 
each firm per year. Higher scores indicate that vulnerabilities more readily 
enable attackers to gain full (root/administrator) privileges on a system. 

NIST NVD 

Confidentiality 
Impact 

Aggregate CVSS “confidentiality” component score, aggregated across all 
vulnerabilities (CVEs) from all vendors adopted across all sites for each 
firm per year. Higher values suggest that vendor-originated vulnerabilities 
have a greater effect on data confidentiality. 

NIST NVD 

Integrity Impact Aggregate CVSS “integrity” component score, aggregated across all 
vulnerabilities (CVEs) in all vendors adapted across all sites for each firm 
per year. Higher values indicate a greater risk of data tampering or 
unauthorized modification. 

NIST NVD 

Availability 
Impact 

Aggregate CVSS “availability” component score, aggregated across all 
vulnerabilities (CVEs) in all vendors adapted across all sites for each firm 
per year. Higher values indicate a greater potential for system downtime or 
service disruptions 

NIST NVD 

CVE Count Total count of CVEs across all adapted vendors across all sites for each 
firm per year. 

NIST NVD 

IT Budget Total annual IT spending by the firm. CiTDB      

Employees Total number of employees working at the firm. CiTDB      

Revenue Total revenue generated from the firm's principal operations. CiTDB      

Total Sites Total number of operational sites for the firm. CiTDB      

 

Table A3: Description of all variables 

Variable Name   Mean   Std. Dev.   Min  
Max 

Year-on-Year Breach Indicator 0.01 0.10 0.00 1.00 

Vendor-Originated Vulnerability (1-
10) 4.91 1.02 1.20 10.00 
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Avg Exploitability Score (1-10) 6.27 1.39 1.90 10.00 

Avg Impact Score (1-10) 4.03 1.46 2.90 10.00 

Avg Access Vector Score (1-3) 2.16 0.57 1.00 3.00 

Avg Access Complexity Score (1-5) 1.31 0.45 1.00 4.56 

Avg Authentication Score (1-2) 0.01 0.04 0.00 1.00 

Avg Obtain All Privileges Score (1-
2) 0.00 0.01 0.00 1.00 

Avg Confidentiality Impact Score 
(1-5) 1.16 1.25 0.00 5.00 

Avg Integrity Impact Score (1-5) 1.14 1.14 0.00 5.00 

Avg Availability Impact Score (1-5) 0.97 1.19 0.00 5.00 

Log Patch Average 0.12 0.10 0.00 1.00 

Log Avg Patch Release Time 5.92 1.42 0.00 8.57 

Log Media Articles Count 9.89 1.15 0.00 13.90 

Log Vulnerability Knowledge 6.76 0.85 0.00 9.07 

Log Num of Records Breached 0.04 0.56 0.00 19.76 

Log IT Budget 13.55 2.10 0.00 24.67 

Log Employees 5.44 1.69 0.00 15.28 

Log Revenue 3.42 1.94 0.00 13.97 

Log Total Sites 1.33 1.03 0.00 9.00 

Log CVE Count 6.90 0.98 0.69 9.50 
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APPENDIX B 

 

Figure B1: Threshold Identification via SSE 

Table B1: Matching statistics PS matching 1:1 

 Raw Matched (ATT) 

Means Treated Untreated StdDif Treated Untreated StdDif 

Log IT Budget 15.478 16.881 -0.651 15.479 15.491 -0.006 

Log Employees 7.165 8.509 -0.783 7.165 7.178 -0.008 

Log Revenue 5.142 6.558 -0.616 5.142 5.162 -0.009 

Log Num of Sites 2.296 2.776 -0.309 2.296 2.295 0.001 
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Figure B3: Density plot of propensity scores-Total 

 

Figure B4: Matching density plot of propensity scores-Individual 



45 
 

 

Figure B5: Relative time model for parallel trend analysis 
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APPENDIX C 

Table C1: CVSS Metric Coding Framework 

Metric Categories and Weights 
Base Severity LOW (0), MEDIUM (3), HIGH (5) 
Base Score Range: 0–10 
Impact Score Range: 0–10 
Exploitability Score Range: 0–10 
Access Vector LOCAL (1), ADJACENT_NETWORK (3), NETWORK (3) 
Access Complexity LOW (1), MEDIUM (3), HIGH (5) 
Authentication NONE (0), SINGLE (1), MULTIPLE (2) 
Confidentiality Impact NONE (0), PARTIAL (3), COMPLETE (5) 
Integrity Impact NONE (0), PARTIAL (3), COMPLETE (5) 
Availability Impact NONE (0), PARTIAL (3), COMPLETE (5) 
 
Privilege Levels 
 
 

Obtain All Privilege: TRUE (Low severity); FALSE (Medium/High severity) 
Obtain User Privilege: TRUE (Low severity); FALSE (Medium/High severity) 
Obtain Other Privilege: TRUE (Low severity); FALSE (Medium/High severity) 

User Interaction Required: TRUE (Low severity); FALSE (Medium/High severity) 
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APPENDIX D 

CVSS Background:  In 2005, the National Infrastructure Advisory Council (NIAC) 

introduced the Common Vulnerability Scoring System (CVSS), an open standard allowing 

quantitative assessment of vulnerabilities' severity (Dobrovoljc et al. 2017). CVSS enables a 

standardized approach for reporting and evaluating vulnerabilities. Since its introduction, it’s 

been managed by the Forum of Incident Response and Security Teams (FIRST) (Goodman 

2024). 

The CVSS system generates a score of 0 to 10 based on three main metrics: Base, 

Temporal, and Environmental. The Base score describes the inherent characteristics of a 

vulnerability. The temporal score reflects how those characteristics may evolve over time. The 

Environmental score assesses the vulnerability's impact within a specific environment. A score 

of 0 indicates a minimal threat, while a score of 10 indicates the highest level of severity. CVSS 

is widely accepted today and has become an integral part of the automated vulnerability 

management process (Goodman 2024). 

Despite its importance, CVSS has been criticized for several reasons. Some argue that the 

distribution of Base score is highly bimodal, and many combinations of attributes produce the 

same final score (Mell et al. 2006). There is also doubt about the accuracy of scores, as the 

severity of vulnerability observed in real-world scenarios does not always align with the CVSS 

score (Townsend 2018). Despite these debates, there is a lack of empirical investigation into 

whether CVSS scores-based characteristics of vulnerabilities are key determinants of cyber risks. 

To address this gap, our study is the first to systematically examine the relationship between 

CVSS metrics and organizational cyber risks, focusing on how these scores influence the 

likelihood and impact of data breaches associated with vendor-originated vulnerabilities. 

NVD process  
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CVE Creation: In the ever-evolving landscape of cybersecurity, where new 

vulnerabilities emerge daily, the NVD is considered as a centralized, trusted repository that 

organizations worldwide rely on to identify, assess, and remediate security flaws effectively. 

When a vulnerability is discovered, researchers or organizations report it to a CVE Numbering 

Authority (CNA), a global network of vendors and cybersecurity experts. Once validated, the 

vulnerability is assigned a unique CVE ID, forming the first link in the chain of standardized 

information. This ID not only identifies the vulnerability but also connects stakeholders to 

essential details such as the affected software, descriptions of the flaw, and references for further 

exploration.  

CVE Enrichment process: Once a CVE is published, the NVD steps in to enrich the data. 

NVD adds critical layers of information, including CVSS metrics, which quantify severity; This 

enrichment transforms raw vulnerability data into actionable intelligence, empowering 

organizations to prioritize risks, streamline patching efforts, and stay compliant with security 

standards. The References section particularly is updated during the enrichment phase of the 

CVE lifecycle. In this process, a dedicated team meticulously reviews the reference materials 

provided with the CVE record and assigns appropriate reference tags. This effort often includes 

conducting manual internet searches to identify any additional relevant and publicly available 

information. Once the enrichment is complete, the results undergo a quality assurance review by 

a senior team member to ensure accuracy and consistency before being published to the NVD 

website and data feeds. 

CVE Knowledge (References): The “References to Advisories, Solutions, and Tools” 

section of the NVD plays a critical role in managing vendor-originated vulnerabilities. Enhanced 

through manual internet research, references are meticulously categorized with labels such as 
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Patches, Advisory, and others. These references are among the most widely used sections of a 

CVE entry, with studies showing that 85 percent of practitioners rely on advisory and patch 

information for their security workflows (Miranda, 2023). The URL links provided in the 

references section allow organizations to extract additional information about vulnerabilities, 

including detailed remediation guidance. This makes references an indispensable resource for 

firms striving to effectively manage vendor-originated vulnerabilities and reduce risks in their 

environments (Li, 2017; Anwar, 2018). 

CVE Patch availability: In the NVD, each CVE entry (See figure D1) the “References to 

Advisories, Solutions, and Tools” section has critical information regarding the CVE, often 

tagged as “Patch,” “Vendor Advisory,” or “Exploit.” A “Patch” tag indicates that the software 

vendor (or another authority) has released a documented fix or update. However, the absence of 

a “Patch” tag does not always mean no fix exists: sometimes the vendor’s only remedy is to 

upgrade to a newer version, or a patch may be released but not yet reflected in the NVD. In other 

cases, the vendor may choose not to fix an issue at all (e.g., for end‐of‐life products). Despite 

these nuances, the NVD remains a critical reference point, especially for small and medium‐

sized organizations that lack dedicated security teams and rely on the NVD as their primary 

source for managing vendor-originated vulnerabilities and obtaining remediation guidance. 

Recent research by (Wunder et al., 2024) highlights the NVD’s central role in practitioners’ 

workflows, showing that it is widely used as an initial checkpoint for identifying and validating 

vulnerabilities. While not a perfect indicator of patch availability, the NVD offers one of the 

closest approximations many firms have for managing software exposures in real-world settings. 
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Figure D1: NVD CVE entry 

CVE Patch Release Time: One of the crucial dimensions of remediating vendor-originated 

vulnerabilities is the speed with which a patch is documented after a CVE’s initial disclosure. 

While the primary NVD web interface does not display the exact date a patch reference is added, 

the NVD Change History API provides timestamps for every update done by the CVE 

enrichment team. By comparing each CVE’s publish date to the date on which a “Patch” 

reference appears in change history, we derive a measure of time taken for patch to be available, 

i.e the number of days that elapse before a fix is formally recognized in the NVD record. This 

approach has the same practical limitations as that for patch availability as described in previous 

section on patch availability. However, despite these nuances, for researchers, this timestamp-

based measure is likely one of the most feasible methods to gauge how quickly a disclosed 

vendor-originated vulnerability transitions to an officially documented remediation. 

NVD Importance: The importance of the NVD extends far beyond its technical details. 

For firms around the globe, it acts as a centralized source of truth, enabling consistent 
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communication about vendor-originated vulnerabilities and their impact. Security teams use 

NVD data to correlate vulnerabilities with their assets, prioritize patches for critical systems, and 

respond swiftly to incidents. Automated tools such as vulnerability scanners and asset 

management systems often rely on the NVD to validate results and provide precise remediation 

guidance. This centralized repository ensures that firms, regardless of size or sector, have access 

to reliable and standardized information, leveling the playing field in the fight against cyber 

threats associated with vendor-originated vulnerabilities. 

 


