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Abstract

This paper examines how knowledge workers—specifically, ethical hackers—allocate
effort within cybersecurity crowdsourcing platforms. Using empirical data from Bugcrowd,
a leading vulnerability disclosure platform, we explore how effort diversification across
tasks influences outcomes under competitive, reward-based incentives. We develop a the-
oretical model grounded in knowledge economy principles to predict when researchers
choose to specialize versus diversify. The analysis reveals that high-skill researchers bene-
fit more from diversification, while others achieve better outcomes through focused effort.
Our findings contribute to the understanding of digital labor markets, strategic decision-
making, and productivity dynamics in knowledge-intensive ecosystems.

1. Introduction

”The new education must teach the individual how to classify and reclassify infor-
mation... Tomorrow’s illiterate will not be the man who can’t read ; he will be the
man who has not learned how to learn.” — Alvin Toffler

The world is changing rapidly. In modern digital economies, the value of work increas-
ingly depends not on physical labor, but on the ability to process, apply, and adapt knowledge.
This shift has generated intense academic interest in knowledge workers—individuals whose
productivity hinges on intellectual expertise, creativity, and responsiveness to complex infor-
mation environments. At the same time, digital platforms have transformed how these workers
engage with markets, clients, and each other.

Traditional economic theory assumes rational expectations: individuals form beliefs about
the future based on available information and use these beliefs to guide decision-making (Weizsäcker,
2010). However, in fast-changing digital environments, where uncertainty, competition, and
rapid innovation dominate, this assumption becomes more fragile. Workers must make strate-
gic choices without full information, relying instead on heuristics, learning, and dynamic adap-
tation. Understanding how they allocate resources in such conditions is central to analyzing
productivity and strategic behavior in the modern economy.
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In this paper, we examine a specific but revealing case: ethical hackers who participate in
cybersecurity crowdsourcing platforms, such as Bugcrowd. These researchers, also known as
white-hat hackers, embody many of the traits central to knowledge economy debates. They
operate autonomously, adapt to high uncertainty, and compete based on expertise. Crucially,
their work is structured around digital tournaments, where only a subset of participants are
rewarded based on performance. This environment provides a unique opportunity to study
strategic decision-making under competitive pressure.

By analyzing ethical hackers as knowledge workers, we aim to connect insights from cy-
bersecurity economics and the broader literature on knowledge labor. We focus on a central
question: should a researcher allocate all effort to one task, or diversify across multiple tasks?
How does this decision depend on skill and reward structure? Our theoretical model formalizes
the tradeoff, and our empirical analysis uses real-world data to test its predictions.

We find that effort diversification depends on both the researcher’s quality and the expected
prize: high-quality researchers are more likely to benefit from diversification. This work con-
tributes not only to understanding bug bounty dynamics but also to larger questions about pro-
ductivity, incentives, and competition in knowledge-based labor markets.

The remainder of the paper is structured as follows. Section 2 reviews the literature on vul-
nerability markets and the knowledge economy, with particular attention to knowledge worker
productivity and labor dynamics. Section 3 introduces the Bugcrowd platform and describes
the empirical dataset. Section 4 presents a theoretical model of effort allocation and diversifi-
cation, including its assumptions and predictions. Section 5 analyzes real-world data in light of
the model, highlighting patterns in researcher behavior and success rates. Section 6 concludes
by summarizing key findings and their implications for digital labor markets and cybersecurity
strategy.

2. Related Literature

2.1 The Market for Vulnerabilities

A market for vulnerabilities is a structured or informal exchange where security flaws in soft-
ware, hardware, or networks are identified, priced, and transferred between buyers and sellers.
These transactions are often based on the flaws’ potential exploitability, impact, and legal or
ethical considerations. In the past decade, several studies have analyzed data from crowdsourc-
ing platforms to better understand the dynamics of this market.

Zrahia et al. (2024) utilized the same dataset as this study to examine the impact of an
exogenous external shock (COVID-19) on Bugcrowd. They found that there was an immedi-
ate and very large effect on the supply side (researchers) yet a much smaller demand effect
(number of programs). The equilibrium outcome was a large increase in duplicate valid sub-
missions, resulting in a lower probability of winning a monetary reward, and a corresponding
decrease in the expected reward for a valid submission. Sridhar and Ng (2021) analyzed a
data set from HackerOne platform. Their findings show that security researchers are motivated
more by non-monetary factors (with a price elasticity of supply between 0.1 and 0.2), and fac-
tors like company revenue and brand profile don’t significantly influence the number of valid
vulnerability reports received, while program age negatively impacts report volume due to the
increasing difficulty of finding new bugs.

Zhao et al. (2015) studied publicly available data of two representative web vulnerability
discovery ecosystems (Wooyun and HackerOne) and showed that white hat communities in
both ecosystems continuously grow, and monetary incentives have a significantly positive cor-
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relation with the number of vulnerabilities reported. Maillart et al. (2017) have analyzed a
data set of public bounty programs and found researchers tend to switch to newly launched
bounty programs at the expense of existing ones. Subramanian and Malladi (2020) studied
41 public bounty programs and examined issues involved with their implementation. Algarni
and Malaiya (2014) used an open vulnerability database to study the career, motivation, and
methods of the most successful researchers. They concluded that a major percentage of vul-
nerabilities are discovered by individuals external to firms, and that financial reward is a major
motivation, especially to researchers in Eastern Europe.

2.2 Knowledge Economy and Knowledge Workers

While the literature on vulnerability markets provides important insights into researcher behav-
ior, it often treats participants as rational agents abstracted from their broader roles as knowl-
edge workers. To address this, we draw on foundational work in the knowledge economy to
better understand how white-hat hackers navigate digital labor platforms.

The knowledge economy (KE) is characterized by the centrality of information, expertise,
and innovation in economic production. Houghton and Sheehan (2000) describe it as a sys-
tem where intangible assets, rather than physical capital, drive productivity and value creation.
Drucker (1999) famously argued that knowledge workers, whose output depends on intellec-
tual skill rather than manual labor, would become the most valuable assets of organizations in
the 21st century.

In cybersecurity platforms, ethical hackers clearly embody this role: they operate indepen-
dently, apply specialized expertise, and compete based on insight rather than routine execution.
Brynjolfsson et al. (2014) extend this discussion by describing a power-law economy, where a
small number of highly skilled individuals capture a disproportionate share of value, much like
top performers on tournament-based platforms such as Bugcrowd.

Powell and Snellman (2004) highlight the tension between worker autonomy and manage-
rial control in knowledge-intensive systems. This tension is evident in crowdsourcing plat-
forms, where researchers exercise discretion over task choice but remain constrained by plat-
form structures and incentive mechanisms. Binney (2001) provides a multidimensional view of
knowledge management, including collaboration, innovation, and sharing—activities that are
also present in hacker communities.

Recent advances in AI and automation further shape this environment. For example, Wiles
et al. (2024) show that generative AI not only automates routine tasks but also raises the strate-
gic and cognitive demands placed on knowledge workers. As their tools evolve, ethical hackers
must continuously adapt to remain effective and competitive in this rapidly changing landscape.

These perspectives frame ethical hackers not merely as users of digital labor platforms but
as autonomous, strategic actors making effort allocation decisions under uncertainty. While a
few studies have employed formal economic frameworks to analyze researcher behavior (Srid-
har and Ng, 2021; Zrahia et al., 2024), this area remains underexplored. This paper aims to
help fill that gap.

3. Bug Bounty Platform and Data

”It takes A crowd to defend A crowd” 1

1https://www.bugcrowd.com/
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Many organizations lack the resources and diversified skills to find hidden vulnerabilities
before attackers do. Unfortunately, using reactive tools alone leads to noisy, low-impact results
that miss emerging risks. Even sophisticated companies can misjudge the creativity, patience,
and diverse skills of today’s attackers. Crowdsourcing emerged to address the skills gap and
the imbalance between attackers and defenders by incentivizing ethical hackers to report critical
bugs.

Bug bounty programs are a structured and legal way for security researchers to be rewarded
for finding software vulnerabilities. The programs enable organizations to get in touch with cy-
bersecurity experts (“white hat” hackers) whose knowledge complements that of the organiza-
tions’ own development and testing teams. From the security researchers’ side, these programs
offer an opportunity to be rewarded legally for the vulnerabilities they find.

Products and services that bring together different groups of users are often referred to by
economists as “two-sided markets” or “two-sided networks”, (Rochet and Tirole (2006)). A
two-sided network involves two different user groups that interact through an intermediary or
platform. The value for one group of users typically depends on the size and engagement of the
other group. A key feature of two-sided networks is the cross-side network effect. This means
that the value of the network to one group of users increases as the number of users in the other
group grows.

Figure 1: Submission workflow in Bugcrowd platform

Bugcrowd is one of the two top leading platform for crowd sourcing. Figure 1 (Zrahia et al.
(2024)) details the workflow for submissions over Bugcrowd’s platform. Prior to starting a
program, the organization defines its objectives and goals, including the exact list of software
programs to be tested (web applications, APIs, mobile versions, etc.). The next step is shaping
the researcher engagement plan, and specifically the program’s duration (continuous or ad-
hoc), researchers’ access (public or private), the payment range per vulnerability (by priority),
and more. Submissions are categorized according to a priority scale of P1 to P5 where P1
are critical vulnerabilities and P5 are informational weaknesses which may not even be fixed.
The platform provides a well-defined Vulnerability Rating Taxonomy (VRT) for researchers
to determine the priority of their submission. Once the program is launched, organizations
have their teams ready to process the incoming submissions, after they have been verified,
triaged (prioritized) and screened for duplicates and relevancy by the platform’s team. Valid
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vulnerabilities are then integrated into the existing Software Development Lifecycle (SDLC)
tools to be fixed, and related reward payouts are processed accordingly.

Bugcrowd offers two types of programs; Managed Bug Bounty programs (MBBs) give a
monetary reward to the first researcher to submit a unique valid vulnerability as well as points.2

Bug bounty platforms thus creates a tournament-like arrangement between researchers in the
platform.

The data set, taken from Bugcrowd platform, spans from 2012 and includes all bug sub-
mission activity through May 2021. During that time, Bugcrowd’s platform has hosted more
than 2,400 programs offered by more than 1,000 organizations, and attracted more than 30,000
active researchers who made at least one submission to a program. We have detailed data
on almost 500,000 submissions made during that time. The data on submissions specifies: Re-
searcher that made the submission; Date and time of the submission (by seconds); The program
and whether it is private or public; Whether the submission was valid, and if so if it was paid
or a duplicate; The amount paid (in US dollars) and the amount of points awarded.

The data set also contains information on the organizations side: firm size, country of origin,
and when it first joined the platform. Many firms run simultaneously more than one program
and for each we have its status, start/end dates, and whether it is open to everyone or only to
selected researchers. While only the first researcher to discover a valid vulnerability is awarded
a monetary payment, the data set also records duplicate valid submissions.

Table 1 provides a broad view of the overall activity on the platform. The trend shows an
increase in activity, with more users, submissions, and bounties over the years. However, it is
notable that the total rewards decreased between 2020 and 2021, as Zrahia et al. (2024) showed
in their work.

One important limitation of our dataset is that it includes only data from the Bugcrowd
platform. While Bugcrowd is a leading player in the vulnerability disclosure ecosystem, other
platforms such as HackerOne or Synack may differ in terms of access policies, workflows, and
researcher composition. As such, our findings may not fully generalize across all bug bounty
ecosystems.

Nonetheless, this paper aims to contribute to a broader understanding of labor patterns
within digital knowledge work. Bug bounty platforms offer a valuable empirical window into

2The second type of program, Vulnerability Disclosure Programs (VDPs) rewards hackers with points, but no
monetary awards. We focus on MBB programs in this research.
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how autonomous knowledge workers, operating in competitive, skill-based markets, strategi-
cally allocate effort. The insights we derive from this case study may help illuminate common
dynamics in other sectors of knowledge-intensive labor.

4. Theoretical Framework: Returns to Diversification in Bug Bounty Work

This section presents a two-tiered theoretical framework to analyze strategic effort allocation
by ethical hackers on bug bounty platforms. Our goal is to explore the economic rationale
behind diversification and specialization. We begin with a generalized model that captures the
decision environment abstractly, and then introduce a tractable toy model to derive analytical
insights and connect to empirical observations.

4.1 Generalized Framework

We consider a population of heterogeneous agents (ethical hackers), each with a unified finite
effort budget E, which can be distributed across multiple bounty programs. The goal of each
agent is to maximize expected utility, defined as the sum of expected rewards across programs
minus the cost of total effort.

Let agent j allocate efforts e1j, e2j, . . . , eNj to N programs, subject to
∑N

i=1 ei ≤ E, ∀j .
The success probability function for task i is si(eij), an increasing function that may include
regions of both increasing and decreasing marginal returns.

Agent quality is captured by a parameter λj , where lower λ indicates higher ability. The
cost function is Cj = λjh

(∑N
i=1 eij

)
, where h(·) is increasing and convex.

The agent j optimization problem is:

max
{ei}

N∑
i=1

Risi(ei)− λjh

(
N∑
i=1

ei

)

To study returns to diversification, we compare different feasible effort allocations. Rather
than posing a binary choice between complete specialization and full diversification, we ana-
lyze the continuum of partial allocations to multiple tasks. For example, we define the return
to a marginal increase in diversification from an allocation e = (e1, . . . , ek, 0, . . . , 0) by eval-
uating the utility gain from reallocating a small portion of effort to an additional task k + 1,
holding total effort constant. This approach captures the nuanced trade-offs agents face in
realistic platform environments.

5. An Illustrative Example of Effort Diversification

We now present a simplified example of the general model with two bounty programs. Each
researcher allocates a total effort budget E = 1, deciding whether to specialize in one program
or diversify effort across two. Let R be the expected reward from a successful submission
(assumed equal across programs), and let the probability of success be a concave increasing
function of effort:

s(e) =
e2

2
− e3

3
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Figure 2: Success probability function.

The cost of exerting effort e is:

c(e) =
λe3

6

where λ > 0 captures the researcher’s inefficiency (higher λ implies greater marginal cost
of effort). We use a cubic cost function to reflect increasing difficulty in effort scaling, partic-
ularly relevant in high-skill knowledge work such as vulnerability discovery, where sustained
cognitive effort results in sharply rising fatigue or failure rates. This functional form captures
the intuition that while initial effort may be relatively inexpensive, maintaining high levels of
mental engagement becomes disproportionately more taxing—both cognitively and strategi-
cally.

The researcher’s utility is:

U = R · s(e)− c(e)

5.1 Specialization Strategy

The researcher allocates all effort to a single program (e = 1):

U1 = R
(
1

2
− 1

3

)
− λ

6
=

R

6
− λ

6

5.2 Diversification Strategy

Effort is split evenly across two programs (e = 0.5 per program):
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U2 = 2 ·
[
R
(
0.25

2
− 0.125

3

)]
− λ

6
=

R

6
− λ

6

At this point, both strategies yield equal utility. However, to explore optimal effort choices
more generally, we derive utility-maximizing effort allocations for each strategy.

5.2.1 Optimized Specialization

U1(e) = R

(
e2

2
− e3

3

)
− λe3

6

Maximizing with respect to e, we find:

dU1

de
= R(e− e2)− λe2

2
= 0 ⇒ e1 =

2R

2R + λ

Substituting back:

U1 =
2R3

3(2R + λ)2

5.2.2 Optimized Diversification

U2(e) = 2R · s
(
e

2

)
− λe3

6
= R

(
e2

4
− e3

12

)
− λe3

6

Taking the derivative:

dU2

de
=

R

2
e−

(
R

4
+

λ

2

)
e2 = 0 ⇒ e2 =

2R

R + 2λ

Substitute to get:

U2 =
R3

3(R + 2λ)2

5.3 Comparative Statics

The return to diversification is:

∆U = U2 − U1 =
R3(2R2 − 4Rλ− 7λ2)

3(2R + λ)2(R + 2λ)2

This expression reveals that diversification dominates when:

R >
1

2
(2λ+ 3

√
2λ)
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Figure 3: Return to diversification Figure 4: Critical value of R

Interpretation. This example illustrates how the returns to diversification depend on both
the expected prize R and the researcher’s efficiency parameter λ. Researchers with higher
expected success rates or lower marginal costs of effort (i.e., higher-quality researchers) benefit
more from spreading their effort across multiple tasks. This is because they are more likely to
convert partial effort into successful outcomes. In contrast, lower-quality researchers face steep
marginal costs and may fail to generate rewards when effort is diluted. As such, diversification
emerges as a strategic advantage primarily for the elite group—those with the skill, experience,
or insight to navigate multiple projects effectively and allocate effort where returns are highest.

5.4 Numerical Illustration

To illustrate the model’s implications, we present a comparison of optimal effort allocation
under different parameter values. Table 2 reports the values of total effort for a single project
(e1) and for two projects (e2) under varying levels of the researcher’s effort cost parameter λ
and expected prize R. Since e2 represents total effort across two projects, the effort per project
in the diversified case is given by e2

2
.

Expected Prize (R) Effort Cost (λ) Single Project Effort (e1) Two Projects Effort (e2)
2.0 0.1 0.98 0.95
2.0 0.25 0.94 0.89
2.0 0.5 0.89 0.80
1.0 0.1 0.91 0.83
1.0 0.25 0.80 0.71
1.0 0.5 0.67 0.57
0.5 0.1 0.80 0.67
0.5 0.25 0.67 0.50
0.5 0.5 0.50 0.33

Table 2: Optimal effort allocation under varying levels of researcher inefficiency (λ) and ex-
pected prize (R).

The relationship between effort cost (λ), expected prize (R), and optimal effort allocation
(e1, e2) reveals how researchers strategically manage their participation. As λ increases, both
e1 and e2 decline, indicating that higher marginal effort costs discourage intensive engagement.
However, when λ is low, the gap between e1 and e2 is minimal—suggesting that high-quality
researchers (low λ) can sustain meaningful effort across multiple projects.
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The level of the prize R also plays a key role: higher rewards incentivize greater effort in
both strategies, and the utility gap between specialization and diversification narrows. Con-
versely, at low prize levels, overall effort declines, and the relative drop in e2 is steeper, reflect-
ing reduced viability of diversification under weak incentives. Taken together, the numerical
results support the notion that diversification is most attractive to skilled researchers operating
under favorable conditions—namely, low effort costs and high potential returns.

6. Empirical Results and Discussion

This section examines the relationship between effort, success, and diversification using real-
world data from the Bugcrowd platform, providing empirical support for the theoretical model.

Our dataset includes 31,754 researchers. A striking feature is the skewed participation
distribution: 14,212 submitted only once, and a small fraction made thousands of submissions,
with the most prolific submitting over 6,000 times. This heterogeneity aligns with the model’s
assumption of variation in researcher quality.

Figure 5 illustrates an important result. This plot explores the relationship between effort
and success, as shown in Figure 3, using real-world data. The data is divided into two-week
intervals. Effort is defined as the total number of submissions made by a single researcher
within each two-week period; only submissions for paying bounties are counted. Each dot
in the plot represents the total number of submissions made by a researcher on the platform
during a two-week interval. Success is measured by the number of submissions that received
a monetary reward. A few classifications for effort were tested, all of which calculated the
number of submissions within a specific period of time. Each method produced similar results.

Figure 5: Success relative to effort in real-world data

As predicted by the theoretical model, the empirical analysis shows that success increases
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as effort increases. This aligns with the assumption that researchers allocate their effort strate-
gically to maximize their expected reward. Moreover, the curve highlights distinct regions
with increasing and decreasing marginal returns to effort. In the increasing marginal returns
phase, additional effort yields disproportionately higher success rates. This aligns with the
model’s prediction that, at lower effort levels, researchers face a learning curve or knowledge
accumulation effect, where each additional unit of effort contributes significantly to perfor-
mance. This could be due to factors such as increased familiarity with the platform, improved
problem-solving strategies, or network effects where accumulated expertise leads to more effi-
cient submissions.

Conversely, in the decreasing marginal returns phase, the model predicts that at higher levels
of effort, additional work leads to diminishing gains in success. This could be due to cognitive
fatigue, saturation of available vulnerabilities, or increased competition, which makes each
additional submission less likely to yield a reward. The model incorporates this by allowing
effort to have a nonlinear effect on expected outcomes, where beyond a certain threshold, the
probability of success per additional unit of effort declines.

We then explore diversification: do researchers perform better when focusing on a single
bounty or distributing effort across several? Figure 6 shows that while submission diversity
increases with overall activity, average rewards do not follow a monotonic trend.

Figure 6: Comparison of average number of bounties and reward levels

Among researchers who submitted twice, those focusing on one bounty earned more than
those diversifying across two. However, in a targeted analysis of a one-month high-traffic pe-
riod in 2019 (chosen for its elevated activity and pre-COVID consistency), we observe a striking
reversal among the top 10% of researchers ranked by success rate: those who diversified earned
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significantly more. Specifically, they averaged $3,200 compared to $794 for those focusing on
a single bounty. This supports the theoretical prediction that diversification is more profitable
for highly skilled individuals.

Table 3 summarizes these findings:

Didn’t diversify Diversified

Total population $203 $128
Top 10% $794 $3,200

Table 3: Reward comparison by diversification strategy

We also observe a highly skewed distribution of platform activity. Figure 7 shows that
about 20% of researchers account for 85% of submissions, a classic long-tail distribution. This
suggests a Pareto-like distribution of quality, with high performers driving most of the output.

Figure 7: CDF of researcher submissions

These findings reinforce the idea that effort and success are shaped by strategic behavior
in a competitive ecosystem. Skill heterogeneity and reward structures create strong incentives
for high performers to diversify, while lower-performing researchers tend to specialize due to
limited capacity or higher marginal costs. This highlights the role of economic decision-making
even in technical and knowledge-based domains like cybersecurity.

7. Conclusion

This paper contributes to the understanding of cybersecurity labor markets through the lens of
economic theory. By modeling ethical hackers as knowledge workers operating in a competitive
platform economy, we frame effort allocation as a strategic decision governed by incentives,
costs, and skill.
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The theoretical model demonstrates how researchers optimize effort under uncertainty, and
the empirical results from Bugcrowd data validate these predictions. We find that effort posi-
tively correlates with success but exhibits diminishing marginal returns. Diversification is not
universally beneficial—only top-performing researchers appear to profit from it.

Our findings emphasize the relevance of economic models in analyzing behavior within
cybersecurity platforms. While most research in this field comes from technical or managerial
perspectives, our approach foregrounds incentives, optimization, and efficiency—concepts that
are central to labor economics and platform studies.

Looking forward, this work lays the foundation for extensions incorporating dynamic strate-
gies, learning, and cross-platform interactions. More advanced statistical modeling could fur-
ther explore the determinants of success and uncover latent researcher traits. As digital labor
markets evolve, particularly in high-skill sectors like cybersecurity, economic frameworks will
be increasingly essential for designing effective platforms and policies.
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