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This paper investigates privacy spillovers, a phenomenon where privacy-enhancing policies by one

platform impact competing platforms. This phenomenon occurs when “multihoming” suppliers—

who straddle multiple environments—make cross-platform adjustments to their data practices in

response to a policy change by one platform. Smartphone platforms are a perfect setting to study

privacy spillovers due to intensity of fine-grained sensitive data collection, major policy changes and

high incidence of developer multihoming. Specifically, we investigate spillovers on Android in the

context of iOS App Tracking Transparency (ATT) policy, which restricts cross-app data collection

on iOS. ATT may Android in one of two ways. Developers might uniformly adopt stricter privacy

measures across all platforms to streamline operations. Conversely, developers might compensate

for iOS data-collection restrictions by adopting more privacy-intrusive practices on Android. By

contrasting the strategies by apps that are available on both iOS and Android with apps that are

only available on Android, we document a notably positive spillover effect: multihoming apps

significantly enhance app utility, evidenced by an increased adoption of third-party services that

enhance features or real-time contextual solutions, and non-intrusive permissions. Furthermore, we

note a strategic shift away from collecting and analyzing user data using third-party services. Con-

sequently, multihoming apps witness significant increases in user ratings on Android marketplace

post-ATT. Finally, these data-collection and utility improvements further fortify multihoming apps’

market positioning, inadvertently affecting Android’s market structure. We discuss practical impli-

cations for competing platforms to mitigate adverse effects on exclusive apps.
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1. Introduction

Over the past decade, public perception of data collection practices has significantly evolved, shifting from

viewing it as an enabler of the data economy (Bonchek and Choudary 2013) toward increasingly insisting

on greater control over personal information. The shift in perception is especially evident regarding third-

party data collection that occurs in the background: 86% of internet users reported actively implementing

measures to avoid such “surveillance” (Madden and Rainie 2015).

In response, both public regulators and private platforms are acting to empower consumers (see Miller

and Skiera (2024) for a list of all regulatory and platform-imposed tracking restrictions). Public regula-

tory approaches, such as the European Union’s General Data Protection Regulation, adopt a top-down and

jurisdiction-specific model. They focus on granting users the rights to control their private data and mandate

that businesses disclose how they use consumer data. In parallel, private digital platforms are actively dis-

couraging opaque third-party data practices and emphasizing transparent first-party data collection through

visible interactions with users (Lin 2022, Mayya and Viswanathan 2024). For instance, smartphone apps

are required to seek individual permissions for accessing location or microphone during active use, rather

than securing blanket permissions at the time of app download.1 This shift to opt-out of data collection by

default marks a transformation in how platforms approach user data-sharing management. The change is

particularly pronounced in smartphone platforms, where apps access highly sensitive personal data includ-

ing precise location, private communications, and behavioral patterns. Consequently, burgeoning literature

has examined consequences of privacy-enhancing policies on focal platform participants (Aridor et al. 2024,

Bian et al. 2021, Kesler 2023, Kircher and Foerderer 2024, Leyden 2025, Mayya and Viswanathan 2024).

However, what is largely absent from the discourse is the potential “spillover” 2 of data collection restric-

tions by one smartphone platform onto competing smartphone platforms. The phenomenon of multi-market

spillovers has been extensively studied, beginning with Bernheim and Whinston (1990)’s seminal work on

multimarket contact facilitating marketwide price coordination. Subsequent research by Parker and Röller

1 iOS Has App Permissions, Too: And They’re Arguably Better Than Android’s - HowToGeek
2 Spillover, as defined by Jaffe (1986), refers to the indirect consequences of a policy in one domain (in this paper, iOS) on related
domains (in this paper, Android). In this study, developers’ adjustments are driven by iOS policy rather than Android considerations.

https://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-better-than-androids/
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(1997) and Busse (2000) show that in the presence of firms with multimarket contact, even firms exclusive

to one market sustain less competitive outcomes. Furthermore, when regulatory constraints are imposed

in one market, studies have documented “compensatory effects.” Firms often respond by raising prices in

unregulated markets to recover lost revenue (e.g., Genakos and Valletti 2011).

Whereas multi-market spillovers resulting from price regulation have been well-established, spillovers

resulting from data regulations in digital markets, especially in freemium digital markets, haven’t been well-

studied. Unlike price, which is purely extractive from the consumer’s perspective, data in freemium markets

serves as an input to the production function by enhancing personalization and user experience, meaning

that data sharing can create positive utility for consumers (Lin 2022). Given the role of data in the freemium

digital markets, which has no parallel in traditional markets, the market equilibrium favors extensive data

collection to provide algorithmic personalization. Enhancing consumer satisfaction through personalization

and generating revenue through targeted advertising are cost- and time-efficient strategies for apps (Allon

et al. 2022) when compared to the effort of identifying and developing new features or real-time solutions

to enhance consumer utility. Hence, apps across markets face little competitive pressure to limit tracking.

When any regulatory policy disrupts data-collection equilibrium on one platform, apps face a strategic

choice absent in traditional markets. They can either adopt the traditional compensatory strategy, as outlined

in the existing spillover literature, in which potential revenue losses caused by tightened privacy policies

incentivize apps to “decouple” their strategies by maintaining separate codebases across platforms. This

strategy enables them to adhere to stricter policies on the focal platform while maintaining or increasing

data collection on the competing platform to offset revenue losses. Alternatively, they can adopt the unified

strategy, a strategy unique to digital products because of the strong prevalence of cross-platform devel-

opment tools like Google’s Flutter and React Native. Under this unified scenario, apps concentrate their

resources on enhancing real-time solutions and feature development on the focal platform, while simulta-

neously reducing behavioral tracking in response to data-collection restriction (Cheyre et al. 2023). These

utility-enhancing changes are then pushed to the competing platform using cross-platform tools. Figure 1

illustrates the feasibility of the latter strategy: Sina Weibo added a development-specific integrated SDK

spanning both platforms, and Sniper Strike removed an analytics-specific integrated SDK from both.
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App: Sina Weibo
Android Development Tool

added “flutter” SDK

iOS Development Tool

2021.07.04

App: Sniper Strike
Android Analytics

removed “amplitude” SDK

iOS Analytics

2021.05.16

Figure 1 Illustration: How the common codebase pans out across two smartphone platforms

Determining which of these strategic responses dominates in practice presents a significant empirical

challenge. Regardless of which path developers choose, spillover effects will occur, making it crucial to

evaluate these effects for understanding market structure given the competition for resources between plat-

forms, especially due to the prevalence of multihoming apps. However, two key factors complicate the

evaluation of spillover effects: (a) the distinct sub-markets formed by each platform, and (b) the shared

codebases across platforms. Consequently, there is no clear intuition on the size and direction of spillover.

We examine these spillover effects by focusing on Apple’s App Tracking Transparency (ATT) policy

enacted in April 2021, which changed cross-app tracking to opt-out-by-default, disrupting the advertise-

ment economy dependent on cross-app tracking. This policy change created a natural experiment where

multihoming apps faced the strategic choice outlined above, enabling us to investigate how multi-platform

apps alter their Android strategies in response to iOS privacy restrictions relative to Android-exclusive apps.

First, to determine which strategic response—compensatory or unified—is observed in practice, we

empirically measure how iOS ATT affects developers’ data collection and feature development strategies on

Android. Extant research has identified permission seeking and integrated third-party software development

kits (SDKs) as two strategies that app developers implement in response to privacy-enhancing policies (e.g.,

Cheyre et al. 2023, Mayya and Viswanathan 2024). SDKs enable data analysis capabilities through spe-

cialized third-party services, whereas permissions achieve similar capabilities using first-party resources.
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Investigating changes to data collection strategies is essential to comprehending which strategic path devel-

opers choose when data regulations on one platform disrupt the equilibrium for data collection. A shift

toward enhanced core features or real-time contextual solutions would indicate that developers adopted

the unified utility-enhancement strategy, whereas an increase in intrusive data collection and third-party

tracking would suggest developers pursued the compensatory extraction strategy. This prompts our research

question: “How does a platform’s privacy-enhancing policy affect developers’ data collection strategies

(e.g., permissions or integrated third-party services) on the competing platform?”.

Next, we examine whether the strategic choices documented above translate into observable differences in

app quality outcomes, as perceived by users. If multihoming apps adopt the unified strategy and implement

utility-enhancing improvements on Android, we expect these apps to show higher quality improvements

compared to Android-exclusive apps, which face no regulatory pressure to enhance features. Conversely, if

apps adopt the compensatory strategy and increase data extraction on Android, this could negatively impact

user experience and ratings. Given the uncertain net impact of these strategic adjustments, the direction and

magnitude of the quality effects will reveal whether privacy spillovers ultimately benefit or harm consumers

on the unregulated platform. This motivates our second research question: “How does a platform’s privacy-

enhancing policy affect app quality outcomes (e.g., user ratings) on the competing platform?”

Finally, we investigate the broader market structure implications of privacy spillover to a competing plat-

form. Given that multihoming apps already hold two-thirds of the Android market share, understanding

how their strategic choices because of iOS ATT affect competitive dynamics is crucial. If multihoming

apps divert significant resources toward addressing iOS regulatory constraints, Android-exclusive apps may

unexpectedly gain, as they focus only on Android users’ needs without cross-platform compliance dis-

traction. However, if multihoming apps successfully implement utility-enhancing features that spill over

to Android, whereas Android-exclusive apps lack similar innovation pressures, this could further concen-

trate market power in favor of multihoming apps. This leads to our third research question, “How does a

platform’s privacy-enhancing policy affect market structure of the competing platform?”

To empirically examine ATT’s spillover effects on Android, we employ a quasi-experimental design

to compare apps available on both iOS and Android (those directly affected by ATT) with exclusive
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Android apps (those not directly affected). Specifically, our dataset encompasses a comprehensive collec-

tion of 12,400 Android apps from a smartphone data-intelligence firm: 7,464 multihoming apps, and 4,936

Android-exclusive apps.3 Using Coarsened and Exact Matching (Iacus et al. 2012) to perform one-to-one

matching without replacement, we create a balanced dataset of 8,828 apps, with 4,414 apps each in the

treated and control groups. For each app, we track weekly changes in permissions, integrated third-party

software development kits (SDKs),4 ratings value, and other relevant attributes. The main panel data spans

55 weeks, from September 2020 (after iOS 14 Release) to September 2021 (before iOS 15 Release), with

2 May 2021 (week 35) marking the policy implementation week. The primary analyses focus on 13 weeks

before and after the policy to better isolate ATT’s impact from other confounding factors, such as iOS and

Android updates. We employ both Two-way Fixed Effects model and Synthetic Difference in Differences

model. Following recent literature (e.g., Cheng et al. 2024, Yeverechyahu et al. 2024), we employed large

language models to classify over 1300 integrated third-party SDKs into one of four functionally distinct

categories: core feature development, analytics, ads and monetization, and data intelligence.

Our analysis reveals that multihoming apps on Android adopted the unified strategy, significantly increas-

ing their feature enhancement efforts while reducing third-party user-level data collection. These apps show

a significant increase in the number of permissions sought, specifically in normal permissions, which per-

tain to app usage data and features not linked to personally identifiable information. In contrast, we do not

see a significant increase in seeking runtime permissions, which pertain to personally identifiable sensi-

tive information. When examining Integrated SDKs, we observe a significant increase in the use of core

feature development SDKs (e.g., those supporting backend infrastructure, commerce functionalities, com-

munication, or social features), and data intelligence SDKs (those that use sensor data to offer contextual

solutions to users) indicating an enhanced focus on improving app functionality. We also observe a signifi-

cant decrease in the use of third-party analytics SDKs (e.g., attribution, marketing automation), suggesting a

reduced focus on tracking. Notably, ads and monetization SDK usage remains unchanged, indicating a sus-

tained reliance on advertising strategies. Overall, our findings suggest multihoming apps prioritize consumer

utility enhancement over compensatory data extraction using analytics SDKs or sensitive permissions.

3 In 2021, the top 12,400 apps accounted for over 85% of all activities (downloads/ratings) among 2.3 million apps on Play Store.
4 Integrated Software Development Kits (SDKs) are pre-written functionalities developed by third parties, which apps can incorpo-
rate to assist with tasks such as e-commerce, advertising, analytics, etc.
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Next, the analysis of user ratings suggests a significant positive spillover effect of the iOS ATT policy

on multihoming apps’ quality outcomes, consistent with the expectations from a unified utility enhancing

strategy. Multihoming apps experience a 0.037 (from the TWFE DiD model) increase in their weekly aver-

age rating value on Android post-ATT. At a mean value of 859 new ratings per week, an increase of 0.037

translates to approximately 127 more users each month, giving these apps a rating that is one star higher,

demonstrating that the utility-enhancing spillovers were recognized and valued by consumers.

Finally, why should competing platforms care if spillovers improve consumer utility? As a consequence

of these quality and feature enhancements, we observe a substantial increase in market concentration on

Android following the implementation of ATT, as measured by the Herfindahl-Hirschman Index (HHI), a

measure of market concentration. This is driven by a significant increase in downloads for multihoming apps

compared to Android-exclusive apps. Given that multihoming apps already held a dominant market share,

the utility and quality enhancements spurred by ATT on iOS spillover to Android and further solidify their

dominant position in the Android market, creating an unintended competitive disadvantage for platform-

exclusive developers who lacked similar innovation pressures.

Our study makes contributions to platform policy and regulation literature in three ways. First,we demon-

strate that privacy policy spillovers in freemium markets operate fundamentally differently than traditional

cross-market spillovers documented in prior literature. Unlike compensatory price increases observed when

firms face regulatory constraints in other markets (Genakos and Valletti 2011), we find that data collec-

tion restrictions can trigger utility-enhancing spillovers when data serves dual extractive and productive

functions. Second, our analyses go beyond mere compliance with the ATT policy by exploring how apps

strategically adapt their data practices in response. Multihoming apps maintain their advertising strategies

while shifting towards app functionality enhancement and real-time contextual solutions. This strategic

response represents a departure from the path-dependent equilibrium of data-driven personalization toward

more resource-intensive but valuable feature development. Finally, by studying ATT’s impact on Android,

we shed light on the competitive dynamics of the mobile app market, demonstrating a critical unintended

consequence of data regulation: Android-exclusive apps losing out since they lacked innovation pressures.

Our findings emphasize the importance of considering the indirect policy effects and suggest platform own-

ers to be vigilant about competitor policies, to avoid putting their exclusive apps at a disadvantage.
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2. Literature Review
2.1. Multihoming and Regulatory Spillover in Freemium Markets

The phenomenon of cross-market spillovers has been extensively documented in the economics literature,

with Bernheim and Whinston (1990) setting the theoretical foundation followed by others providing empir-

ical validation (e.g., Parker and Röller 1997, Busse 2000). The main idea is that, in the presence of firms

with multimarket contact, it is possible to sustain market-wide tacit coordination of prices. Interestingly,

even single-market firms, not just the firms with multimarket contact, agree to set less competitive prices in

equilibrium. Furthermore, when regulators constrain such coordination in one market, the extant framework

predicts “compensatory effect” in unregulated markets (Genakos and Valletti 2011), i.e., any attempt to reg-

ulate one market results in firms increasing prices in unregulated segments to maintain overall profitability.

In digital marketplace contexts such as smartphone app stores, multimarket contact manifests as multi-

homing, where same apps are available across multiple platforms simultaneously. Research has investigated

antecedents of multihoming decisions, with Tian et al. (2022) focusing on platform compatibility influences

and Koh and Fichman (2014) investigating how selling/buying activities affect multihoming preferences

in B2B exchanges. Studies have also examined the economic forces influencing these choices, where the

primary focus has been the trade-offs between market reach and costs of decreased product differentiation

or increased development effort. Li and Zhu (2021) document a link between information transparency and

multihoming decisions.

The spillover effect of multihoming, where an app’s presence on one platform influences its performance

on another, is a specific form of economic force at play. Koryakina et al. (2016) documents an increase

in sales from multihoming through enhanced user awareness and quality signaling. Geng et al. (2020) and

Landsman and Stremersch (2011) note a trade-off between potential demand loss owing to compatibility

and the benefits of expanded market reach. Barua and Mukherjee (2021), Dou and Wu (2021) and Bakos

and Halaburda (2020) study the interplay between spillovers across different sides of the market, cross-

side network effects, and price competition. Finally, the literature on indirect network effects also provides

insights into supplier multihoming spillovers (Corts and Lederman 2009, Rysman 2004).
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However, these studies focus primarily on demand spillovers, network effects, and strategic positioning

in freemium markets. What remains unexplored is how privacy policies that restrict data collection on one

platform affect multihoming developers’ strategic responses across platforms.

2.2. Data Privacy Policies and Third-party vs. First Party Data

Unlike traditional competitive variables such as price, data in freemium markets serves a dual function: it

generates revenue through targeted advertising while simultaneously enhancing user utility through person-

alization and improved app functionality (Lin 2022). This dual role creates fundamentally different strategic

incentives for developers, as data collection can simultaneously extract value and create consumer bene-

fits, distinguishing freemium platform competition from traditional market dynamics, where competitive

variables are typically purely extractive (Bian et al. 2021, Kraft et al. 2023).

Given the hidden externalities of extensive data collection (Acquisti et al. 2016), alongside public reg-

ulations (e.g., Johnson et al. 2023, Ke and Sudhir 2023, Peukert et al. 2022), private digital platforms are

proactively focusing on enhancing choices that consumers have regarding their personal data. For instance,

all smartphone platforms now allow app users to decide during app usage whether or what type of sensi-

tive data (e.g., location) apps can collect, a departure from a broad consent during download (Mayya and

Viswanathan 2024). This shift towards greater user control has implications for the economic viability of

online businesses reliant on targeted advertising (e.g., Kircher and Foerderer 2024, Miller and Skiera 2024).

One specific type of data protection policy that has gained prominence is the shift to default opt-out

mechanisms, significantly impacting businesses reliant on targeted advertising (Miller and Skiera 2024).

The 2021 iOS ATT framework exemplifies a default opt-out policy in mobile apps. Most ATT studies focus

on developers’ responses. Kesler (2023) and Cheyre et al. (2023) find that ATT led to a decrease in the use

of third-party tracking tools along with an increase in the adoption of alternative monetization strategies,

such as in-app purchases and subscriptions. Aridor et al. (2024) examine ATT’s impact on conversion-

optimized advertising effectiveness on Meta. Kollnig et al. (2022) note that while ATT has made individual

user tracking more difficult, it has also led to a counter-movement in which developers explore alternative

tracking methods, such as fingerprinting and cohort tracking. Li and Tsai (2022) document a decrease in

new downloads, particularly for larger apps that relied heavily on third-party data for user acquisition.
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Despite the prevalence of multihoming by apps, the spillover effect of a default opt-out privacy policy

on competing platforms is not well studied. Consequently, whether apps homogenize or decouple their data

practices across platforms in response to platform-specific regulations remains an open empirical question.

2.3. Literature Gaps and Research Questions

The convergence of three critical trends—widespread developer multihoming, the rise of privacy regula-

tions, and the prevalence of cross-platform development tools—creates a fundamental gap in our under-

standing of digital platform competition. While existing spillover literature has established how regulatory

constraints in traditional markets lead to compensatory price increases in unregulated segments (Genakos

and Valletti 2011), no one has examined how privacy policies that restrict data collection—a dual-purpose

resource in freemium markets—affect competitive dynamics across interconnected digital platforms.

This gap is particularly consequential because of a unique strategic choice in freemium digital mar-

kets absent in traditional markets. When privacy regulation disrupts the data-collection equilibrium on one

platform, multihoming developers can either adopt compensatory strategies (increasing data extraction on

unregulated platforms to offset losses) or unified strategies (implementing utility-enhancing improvements

across all platforms using shared codebases). The prevalence of cross-platform development tools makes

the latter strategy economically viable in ways that have no parallel in traditional multimarket competition.

The implications of this knowledge gap extend beyond academic theory to critical policy questions.

If developers adopt compensatory strategies, privacy regulations could inadvertently harm consumers on

unregulated platforms through increased data extraction. Conversely, if unified strategies prevail, privacy

policies could create positive spillovers that enhance consumer utility across platforms while simultaneously

affecting market concentration in unintended ways. Without empirical evidence, policymakers and platform

owners cannot anticipate or manage these cross-platform effects.

Our research addresses this gap through three interconnected questions that collectively reveal how pri-

vacy spillovers reshape digital platform competition. First, how does a platform’s privacy-enhancing policy

affect developers’ data collection strategies on competing platforms? This question determines whether

compensatory or unified strategies dominate, providing fundamental insight into the mechanics of digital
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platform spillovers. Second, how do these strategic responses affect app quality outcomes on competing

platforms? This reveals whether spillovers ultimately benefit or harm consumers on unregulated platforms.

Third, how do privacy policy spillovers affect market structure on competing platforms? This uncovers

the broader competitive implications, including potential unintended consequences for platform-exclusive

developers and market concentration.

3. Context, Data, and Models
3.1. Business and Empirical Context

To test our theoretical framework of compensatory versus unified strategic responses to privacy spillovers,

we require a setting where: (1) a privacy policy creates an exogenous shock to data collection practices

on one platform, (2) a substantial number of apps multihome across platforms with shared development

resources, and (3) the policy change is unrelated to competitive conditions on alternative platforms. Apple’s

App Tracking Transparency (ATT) policy provides an ideal natural experiment that satisfies all these con-

ditions, creating clean treatment variation to isolate spillover effects from confounding factors. ATT policy

was officially implemented on April 26, 2021, with iOS version 14.5. ATT mandated that all iOS apps must

obtain explicit user permission before tracking their activities across other apps and websites. This policy

aligned with Apple’s privacy-focused branding, potentially helping Apple enhance user trust.

Prior to iOS version 14.5, apps could track users’ activities across other apps and websites using a phone-

generated unique identifier called IDentifier For Advertisers (IDFA), which functions similar to a third-party

cookie in web browsing. Although users could limit tracking since 2012 through the “limit ad tracking”

setting option, this wasn’t widely publicized. However, ATT changed this approach by mandating apps to

obtain explicit consent from iPhone users before accessing their IDFA. Figure 2 illustrates the notification

that users receive in version 14.5 and beyond, the first time an app intends to access users’ IDFA. In essence,

iOS switched the tracking option from opt-in-by-default to opt-out-by-default. This change affected digital

advertising as only about 20% of iOS users opted into allowing IDFA tracking.5 Consequently, firms reliant

on IDFA for targeted advertising reported substantial revenue losses (e.g., Aridor et al. 2024).6

5 ATT Opt-In Rates: The Ugly Truth Behind Why The Numbers Vary So Widely - AdExchanger
6 Facebook says Apple iOS privacy change will result in $10 billion revenue hit this year - CNBC

https://www.adexchanger.com/data-driven-thinking/att-opt-in-rates-the-picture-so-far-and-the-ugly-truth-behind-why-the-numbers-vary-so-widely/
https://www.cnbc.com/2022/02/02/facebook-says-apple-ios-privacy-change-will-cost-10-billion-this-year.html
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Figure 2 App Tracking Transparency (Courtesy: (Apple Website))

In examining ATT’s spillover effects on Android, we exploit the policy change’s quasi-experimental

nature. Multihoming apps (operating on both iOS and Android) constitute our treatment group, as their

mandatory ATT compliance may influence their Android data practices due to shared codebases and opera-

tional efficiencies. Android-exclusive apps serve as our control group, since they operate independently of

the iOS and ATT requirements. Neither did iOS 14.5 introduce other major changes, nor did Android have

any updates, which ensures that the exogenous shock has no confounders.

3.2. Data

Our dataset comprises top 12,400 Android apps, with 7,464 available on both iOS and Android platforms

(treated multihoming apps), and 4,936 exclusively on Android (control exclusive apps). We work with a

reputed smartphone data intelligence vendor to obtain the panel data that represents the global distribution

of the app population (see Appendix Table A1 for category wise comparison and Appendix Figure A1 for

rating distribution). For each app, we track their weekly ratings value, ratings count, permissions list, and

integrated SDKs list. Our primary panel data spans 55 weeks from September 2020 to September 2021,

with 34 weeks before and 21 weeks after ATT. This timeframe helps mitigate confounding factors from

subsequent iOS 15 and Android 12 releases that could affect app development and user behavior. The main

analyses are on 26 weeks, 13 weeks before and after the policy. Table 1 provides the variable description

and summary statistics.

Permissions: To understand how developers alter their app development strategy, we utilize

Permissionsit , which represents the number of permissions app i requests as of week t. We further disag-

gregate these permissions into runtime permissions and normal permissions, based on Android’s official

https://support.apple.com/en-us/HT212025
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Table 1 Variable Description and Summary Statistics after Matching

Table 1(a): Variable Description
Variable Name Description
RatingValueit The cumulative user rating that the app i has received by the end of week t.
Downloadit The weekly download of the app i by the end of week t.

calculated using the download estimates of the top 2,674 apps.
Permissionsit A count variable indicating the count of permissions app i requests as of week t.
Runtime− A count variable indicating the count of runtime permissions app i
Permissionsit requests as of week t
SDK Countit A count variable indicating the count of SDKs app i requests as of week t.
SDK Counti jt A count variable indicating the count of SDKs app i requests of the type j

( j ∈ Core Feature Development, Analytics, Ads & Monetization, Data Intelligence) in week t.
Multihomingi A dummy variable that takes the value of 1 if app i is available on both iOS

and Android platforms, and 0 if it is exclusively available on Android.
AT T Enactedt A dummy variable that takes the value of 1 for the weeks after the enactment of

Apple’s App Tracking Transparency (ATT) policy, and 0 for the weeks before.

Table 1(b): Summary Statistics post Matching
Variable Obs Mean Std. Dev. Min Max
RatingValueit 485,540 4.14 0.44 1 5
Downloadit 96,264 636,567 3,186,526 0 177.82×106

Permissionsit 485,540 13.76 12.85 0 259
RuntimePermissionsit 485,540 2.73 2.86 0 31
SDK Countit 485,540 6.20 6.55 0 66
MultiHomingi 485,540 0.23 0.5 0 1
AT T Enactedt 485,540 0.60 0.5 0 1

classification. By definition, runtime permissions are needed to collect personally identifiable data whereas

normal permissions are needed to collect usage-related data, such as network status, Wi-Fi, or vibration. 7

Weekly measure of Rating Value: The dependent variable for the first research question captures the

app quality: the weekly value of RatingValueit that app i receives in week t.8

Download Estimates: We obtain the weekly download estimates, Downloadit , for the top 2,674 apps in

our dataset from the data vendor.9

Integrated SDK Usage Measurement: Central to understanding developer strategies is identifying the

types of third-party services that apps integrate through Software Development Kits (SDKs). These pre-

packaged modules provide functionalities like in-app-ads, social media integration, user attribution, etc.

7 More details can be found in Android’s official website - Permissions on Android
8 The value is calculated as (RatingValueit × RatingCountit - RatingValueit−1 × RatingCountit−1)/(RatingCountit -
RatingCountit−1), where RatingCountit is the count of ratings that an app i has received by the end of the week t. We carry forward
the weekly RatingValue from the previous week for apps that did not receive a rating that week.
9 Downloads are extremely skewed towards popular apps, specifically the top 500 apps (Zhong and Michahelles 2013, Garg and
Telang 2013). While Android has approximately 2.3 million apps (Prakash 2021), the top 2,500 apps account for about 65% of
downloads using the lower bound of download bucket (e.g., treating ‘10000+’ installs as exactly 10,000 installs) and 67% of the
review counts, a potential proxy for downloads. Hence, we focus on the top 2,674 apps.

https://developer.android.com/guide/topics/permissions/overview
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Understanding how apps start or stop certain SDKs provide insights into apps’ monetization, data collection,

and feature enhancement strategies. Hence, we obtain weekly panel data on integrated SDKs from the

aforementioned business intelligence data provider, encompassing over 1,300 SDKs across 13 categories.10

Category Identification and Refinement: One challenge in analyzing modern SDKs is that they often

bundle multiple complementary functionalities, aiming to differentiate themselves from other SDKs while

offering apps a more streamlined development environment. For example, an analytics SDK may also offer

marketing automation tools that leverage the analytics output. Such a bundling of complementary function-

alities complicates SDK analysis. Adding to this complexity, our data vendor assigned category labels to

each SDK without indicating those categorys’ relative importance.

To address this complexity, we first analyze the SDK category co-occurrence patterns, recognizing that

SDK categories that frequently occur together often serve related purposes. For instance, Analytics and Mar-

keting Automation co-occurs frequently (19 times), suggesting a combined focus on tracking user behavior

and automating marketing actions based on those insights. Similarly, Development Tool frequently co-

occurs with Backend (27 times) and Communication (20 times), indicating their role in integrating core app

functionalities. By identifying these co-occurrence patterns, we consolidate the original 13 SDK categories

into four functionally distinct groups that represent the key pillars of the freemium app economy:

• Core Feature Development SDKs provide essential functionalities for user engagement, including

backend services, commerce functionalities, communication features, and social integration.

• Analytics SDKs help data collection to understand user behavior and optimize performance through

attribution, marketing automation, and user tracking.

• Advertising and Monetization SDKs enable monetization through display ads/targeted promotions.

• Data Intelligence SDKs automatically generate real-time insights from collected sensor data, such as

location data, to provide contextual solutions directly benefiting users.

LLM-Based Annotation and Validation: Accurately categorizing 1,305 SDKs into these four cate-

gories based solely on co-occurrence patterns and vendor labels is a challenge given the absence of stan-

dardized categorization criteria for mobile SDKs. To address this challenge, we employed a Large Language

Model (LLM) approach for efficient and accurate classification of SDK descriptions into our four categories.

10 The thirteen categories as per our data vendor in 2021 are: Analytics, Ad Network, Attribution, Backend, Commerce, Commu-
nication, CRM, Data Intelligence, Development Tools, Game Engine, Marketing Automation, Social, and Survey.
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Based on recommendations by Cheng et al. (2024) for LLM-based annotation tasks, we developed

detailed annotation guidelines that define each category with specific functionalities and examples. We

recruited three human subjects and provided them the initial annotation guidelines. They were asked to tag

a random sample of 25 SDKs and were instructed to meet on Zoom to discuss differences and then col-

laboratively improve the annotation guidelines to address differences in comprehension. Then another 25

SDKs were allocated and the process continued until taggers achieved over 66.66% mean Cohen’s Kappa.

Overall, three iterations were needed to cross the threshold agreement rate. As noted by Cheng et al. (2024),

this process of discussing the differences addresses corner-cases and enhances the prescriptive nature of

the guidelines and consequently enhance annotator agreements. This process also enhances taggers’ subject

knowledge, making them “annotation experts” to generate accurate human baselines. Appendix B presents

the final annotation guidelines after three iterations, as well as the prompt structure used with the LLMs.

To choose the most suitable LLM for our task, we benchmarked the performance of six different models

(GPT-4o, GPT-4.1, GPT-o3, GPT-o1, Deepseek R1, and Deepseek V3) against expert human annotations.

We randomly selected 150 SDKs and their descriptions and had them tagged by the same three human

annotators who iteratively improved the annotation guidelines in the prior step. We then compared the

LLM outputs with human annotations and found that GPT-o1 outperformed other models with an 89.33%

agreement rate and Cohen’s Kappa of 0.83, indicating “almost perfect” agreement (Cohen 1960, McHugh

2012). Figure 3 visualizes the Cohen’s Kappa value of different models against expert human annotations.

Using GPT-o1, we processed 1,305 unique SDKs, consuming about 1 million input tokens and gener-

ating 1.365 million output tokens for the complete annotation task. This process resulted in four weekly

variables, each representing the number of SDKs an app has integrated from the respective group in a given

week. Appendix Table A2 provides the list of integrated SDK categories, their respective category groups

and a representative example in each category. The LLM-based approach ensures consistent and scalable

categorization while maintaining high agreement with expert human judgment.

3.3. Empirical Strategy

In our empirical study, we examine iOS ATT’s spillover effect on the Android marketplace. Given that

this is a one-shot policy implementation without staggered adoption, we use the classical Two-Way Fixed
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The x-axis is the Cohen’s Kappa value against expert human baseline.

Figure 3 Model Outcomes for Annotation

Effect (TWFE) with Difference-in-Differences (DiD) model with app and time fixed-effects. The multihom-

ing apps—affected by ATT because of their iOS presence—serve as our treated group, whereas Android-

Exclusive apps are our control group.

3.3.1. Matching: Concerns about non-random treatment assignments can be addressed by pre-

processing data through matching (Dehejia and Wahba 2002). We employ Coarsened and Exact Matching

(CEM), a non-parametric matching technique (Iacus et al. 2012). CEM “coarsens” time-variant covariates

(cumulative rating value, weekly rating value, rating count and permissions), and performs exact one-to-one

match on these buckets and app category, yielding a balanced dataset of 4,414 treated and control apps each.

Our empirical model is formally specified as:

Yit = α +β MultiHomingi ×AT T Enactedt +µi +υt + εit (1)

where i and t index an app and week, respectively. α is the intercept, µi and υt represent the fixed effects

for app i and absolute week t, respectively. The outcome variables of interest, Yit , are the weekly values of

Permissions and SDKs, Ratings, and Downloads, and β captures the DiD estimate.

3.3.2. Parallel Trends: We test the parallel trends assumption using the model from Autor (2003):

Yit = α +
−1

∑
τ=−κ

α
p
j MultiHomingi ×RelativeWeekt +µi +υt + εit (2)
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where RelativeWeekt is a vector of dummies representing each week j before the treatment took place.

The parallel trends assumption holds if the interaction terms (i.e., α
p
j ) are insignificant prior to treatment.

The results are presented in their respective sections: Permissions in Figure 4, SDKs in Figure 6, rating in

Figure 10 and downloads in Figure 13. All trends are parallel before ATT.

3.4. Alternative Empirical Strategy using Synthetic Difference in Differences

Synthetic Difference-in-Differences (Synthetic DiD) approach (Arkhangelsky et al. 2021) is a nonparamet-

ric technique that constructs a “synthetic” control group (Abadie et al. 2010) to create a counterfactual

scenario of what would have happened to the multihoming apps on Android had they not been subject to

the iOS ATT policy changes. It is derived by identifying a weighted combination of control group apps

that closely mirrors the treated group’s outcomes in the pre-ATT period, while weighting time periods to

emphasize weeks closer to ATT implementation. Comparing post-ATT outcomes of treated apps with their

synthetic control isolates the causal impact of iOS ATT on the Android app ecosystem. Formally, the Syn-

thetic DiD estimation procedure solves:

(τ̂, µ̂, α̂, δ̂ ) = {argmin
N

∑
i=1

t

∑
T=1

(Yit −µ −αi −δt −ATT Enacteditτ)
2
ω̂i, λ̂t} (3)

Here, Yit , represents outcomes (weekly rating value, permissions, or integrated SDKs) for app i in week

t. The model includes app-fixed effects (αi) and week-fixed effects (δt) to account for time-invariant app-

specific factors and common time trends, respectively. AT T Enactedit denotes the treatment indicator.

Parameter τ captures the average treatment effect on the treated (ATT), the causal effect of iOS ATT policy

on outcomes for treated Android apps. ω̂i and λ̂t represent app weights and time weights, respectively.

4. Results
4.1. How does iOS ATT impact developers’ development strategies on Android?

Recent studies show that iOS developers responded to ATT by increasing paid features, switching to paid

versions, and decreasing ads-dependent features (Kesler 2023, Cheyre et al. 2023), indicating a paradigm

shift in which app users are increasingly required (and willing) to pay with real currency instead of per-

sonal data.11 Given that Android did not introduce comparable restrictions on third-party tracking, we aim

11 The Cisco 2024 Privacy Survey highlights this trend - Read here

https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-consumer-privacy-report-2024.pdf
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to understand if and how app developers alter their strategies on Android in response to the iOS policy

change. Specifically, we analyze whether multihoming apps on Android adjust their (1) permission seeking

practices, either regarding sensitive data or usage-related data, and (2) integration of third-party services

for core feature development, analytics, or advertising.

4.1.1. How does iOS ATT impact Permission Seeking behavior on Android? Permissions are

requests made by apps to access specific data or functionalities on a user’s device. Android apps require

two types of permissions: normal permissions and runtime permissions. Apps need normal permissions to

collect usage-related data and can be obtained during app installation without explicit user consent (e.g.,

accessing Wi-Fi status, notification policies). Apps need runtime permissions to gather personally identifi-

able data and should be explicitly sought from users during app usage (e.g., location, contacts, microphone,

SMS).12 The key difference between the two types of permissions is that while normal permissions sup-

port basic app features, runtime permissions enable personalized experiences. Research shows that policy

changes targeting personally identifiable permission-seeking strategies on Android induce strategic behav-

ior among app developers (Mayya and Viswanathan 2024). We focus on whether changes in the iOS per-

sonal data collection policies influence how multihoming apps seek permissions on Android.

Using our matched dataset of 8,828 apps, as outlined in Section 3.3, and study the changes in permission

requests before and after the ATT policy by estimating model 1 with permissions sought as the dependent

variable. Panels (a) and (b) of Figure 4 visualize the lead-lag graph for runtime and normal permissions,

respectively. The graphs suggest that the pre-treatment trends for multihoming apps and Android-exclusive

apps are not significantly different. Table 2 presents our analysis results.

Multihoming apps significantly increase their overall permission requests compared to Android-exclusive

apps (Column 1), driven primarily by normal permissions (Column 3) rather than runtime permissions

(Column 2). Apps increase their collection of usage data, particularly related to user activity within the app.

This could be indicative of new app features that rely on analyzing usage to optimize performance, provide

relevant features, or enhance contextual awareness. For instance, apps might collect data on feature usage

12 Permissions on Android - Android Portal

https://developer.android.com/guide/topics/permissions/overview
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Joint significance test for pre-treatment is 1.14 (p = 0.32)

(a) Runtime (privacy sensitive) Permissions

Joint significance test for pre-treatment is 0.70 (p = 0.75)

(b) Normal (not privacy sensitive) Permissions

Figure 4 The impact of ATT on the number of Permissions on Android: Parallel Trends Graph

frequency or user navigation patterns. The focus on normal permissions over runtime permissions aligns

with industry trends toward data-driven optimization and contextual advertising (Kraft et al. 2023). The

results remain consistent using Synthetic DiD (Columns 4-6). Figure 5 presents the coefficient plot from

extended analysis using 55 weeks (34 weeks before and 21 weeks after the policy).

Table 2 The impact of ATT on the number of Overall Permissions on Android

Matching + TWFE DiD Synthetic DiD
Overall Runtime Normal Overall Runtime Normal
Permissions Permissions Permissions Permissions Permissions Permissions
(1) (2) (3) (4) (5) (6)

Multihoming× 0.070∗∗ 0.002 0.068∗∗ 0.052∗∗ −0.005 0.058∗∗

AT T Enacted (0.031) (0.009) (0.028) (0.025) (0.006) (0.023)

App FE Y Y Y Y Y Y
Week FE Y Y Y Y Y Y
Observations 229,528 229,528 229,528 322,400 322,400 322,400

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Standard Errors clustered around apps in parentheses for TWFE DiD.

Bootstrapped Standard Errors with 100 replications in parentheses for Synthetic DiD.

4.1.2. How does iOS ATT affect Android apps’ third-party services integration? Beyond permis-

sions, third-party software development kits (SDKs) also offer insights into how developers adapt their data

collection strategies in response to policies like ATT. SDKs are essential building blocks in app develop-

ment, offering pre-packaged functionalities such as analytics, social media integration, and advertising. As

an essential part of providing these functionalities, these SDKs access a trove of user information—some

gather usage data for app features, while others collect personally identifiable information for targeting
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Note: In each set, the left (green) coefficient is of TWFE DiD and the right (purple) one is of Synthetic DiD.

Figure 5 Coefficient Graph for Permissions - Longer Time Period (55 weeks)

and personalization (Zhan et al. 2021). Examining changes to SDK integration patterns among Android

apps, particularly those with iOS counterparts, we can understand how developers re-calibrate their data

collection strategies following iOS ATT.

To examine how iOS ATT affects Android apps’ third-party service integration, we leverage SDK usage

dataset from the data vendor. We consolidate thirteen SDK categories into four broader categories as

described in detail in Section 3.2: Core Feature Development, Analytics, and Ads and Monetization, and

Data Intelligence. This consolidation reflects how SDKs often bundle complementary functionalities to dif-

ferentiate their offerings and simplify integration for app developers.13 These four consolidated categories

represent the core aspects of value creation and capture within the free app economy. Core feature devel-

opment SDKs (e.g., social integration, communications, backend services) are crucial for functionality;

analytics SDKs provide insights into user behavior; and ads and monetization SDKs are essential for app

monetization, and data intelligence SDKs provide real-time solutions using phone sensor data.

We estimate the model 1 on weekly panel of four categories of SDKs deployed by the matched 8,828

apps. We modify the model 1 to control for the total count of SDKs from other category groups, scaled to

13 For example, both Medallia Digital or AppDynamics bundle marketing automation and analytics capabilities within their SDKs,
enabling seamless user insights collection and and targeted campaigns based on those insights.
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address the skewed nature of this count measure. Sub-figures (a) through (d) of Figure 6 visualize the lead-

lag graphs for Core Feature Development, Analytics, Advertising and Monetization, and Data Intelligence,

respectively. The graphs suggest no significant pre-treatment difference in trends.

(a) Core Feature Improvement (b) Analytics

(c) Ads and Monetization (d) Data Intelligence

The x-axis represents time, and the y-axis represents the effect size (count of SDKs).

Figure 6 The impact of ATT on the Integrated SDKs on Android: Parallel Trends Graph

The results of the analysis are presented in Table 3. We observe a significant increase in the integration

of core feature development SDKs (Column 1) and data intelligence SDKs (Column 4), and a decrease in

the use of analytics SDKs (Column 2) following the treatment. Notably, the advertising and monetization

SDKs usage remains unchanged (Column 3). The Synthetic DiD analysis (Columns 5-8) is consistent.
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Table 3 The impact of ATT on Integrated SDK usage on Android

Matching + TWFE DiD Synthetic DiD
core feature analytics ads and data core feature analytics ads and data
improvement monetizationintelligence improvement monetizationintelligence
SDK SDK SDK SDK SDK SDK SDK SDK

(1) (2) (3) (4) (5) (6) (7) (8)

Multihoming× 0.044∗∗ −0.024∗∗∗ 0.015 0.003∗∗ 0.030∗∗ −0.020∗∗∗ 0.014 0.003∗∗∗

AT T Enacted (0.022) (0.007) (0.017) (0.001) (0.015) (0.005) (0.013) (0.001)

App FE Y Y Y Y Y Y Y Y
Week FE Y Y Y Y Y Y Y Y
Observations 229,528 229,528 229,528 229,528 322,400 322,400 322,400 322,400
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Standard Errors clustered around apps in parentheses for TWFE DiD.

Bootstrapped Standard Errors with 100 replications in parentheses for Synthetic DiD.

Note: In each set, the left (green) coefficient is of TWFE DiD and the right (purple) one is of Synthetic DiD.

Figure 7 Coefficient Graph for SDKs - Longer Time Period (55 weeks)
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Taking these findings together with the increase in the normal permissions sought in section 4.1.1, we

observe two key changes among multihoming apps on Android following the implementation of iOS ATT.

First, multihoming apps increase the development of new features on Android, arguably as a spillover

effect from iOS. This is reflected in both the increased use of core feature development SDKs and the

higher volume of normal permissions sought. Second, they reduce their reliance on third-party analytics

tools on Android, also a spillover effect from iOS, where they naturally reduce gathering third-party data

post ATT restrictions. Interestingly, this did not affect their ad strategies, suggesting that their ad strategy

of displaying targeted advertisements can be effectively executed with first-party usage data instead of

third-party analytics. In Sections 4.2 and 4.3, we further explore how these changes impact the app quality

outcomes and market structure, respectively.

4.1.3. Robustness Checks The first robustness check involves employing a Poisson regression to

account for the count nature of Permissions and SDK. Appendix Tables A3 and A5 present the results for

Permission and SDK analyses, respectively. The findings align with our main findings.

Second, we address potential autocorrelation concerns in panel data by collapsing time-series data into

two observations per app: one for pre-treatment and one for post-treatment period, following Bertrand et al.

(2004). This approach mitigates the influence of time-dependent correlation within apps. We estimate the

Model 1 on this collapsed dataset and present the results for permissions analysis in Appendix Table A4

and that for SDK analysis in Appendix Table A6. Both results remain consistent with our main findings.

Finally, we bolster the robustness of our empirical strategy through the in-space placebo test, as demon-

strated in the literature (Burtch et al. 2018, Mayya and Li 2024). In these tests, we randomly assign treatment

status to Android-specific apps that were, in reality, never exposed to the treatment. By conducting simula-

tions with these “fake” treatments and re-estimating our model, we can gauge the likelihood of observing

effects of a similar magnitude to our actual treatment effect purely by chance. The results of these tests

for the Permissions analysis for the three types of permissions (overall, normal, and runtime) are presented

in Figure 8 and those for three integrated SDKs categories (core feature improvement, analytics, advertis-

ing and monetization, and data intelligence) in Figure 9. The distribution of the placebo effects, centered

around zero, indicates that the observed impacts on permissions and SDKs are indeed attributable to iOS

ATT exposure, rather than spurious correlations.
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(a) Overall Permissions (b) Normal Permissions

(c) Runtime Permissions

Note: The x-axis represents distribution of placebo effects and the y-axis represents the density.

Figure 8 The Placebo Test for the Permissions on Android

4.2. How does iOS ATT impact the Android App Quality Outcomes via Spillover?

Building on Section 4.1’s finding that multihoming developers chose to adapt the utility-enhancing changes

on iOS to their Android apps as well, we examine impacts on app quality outcomes. We estimate Equation 1

with the weekly value of RatingValueit as the dependent variable, which measures weekly aggregate of user

satisfaction rating values. As detailed in Section 3.1, our analysis compares multihoming apps (treatment)

with Android-exclusive apps (control). Figure 10 confirms parallel pre-treatment trends between groups,

satisfying the quasi-experimental requirements.

The results are presented in Table 4. Multihoming apps experience a significant increase in their weekly

average rating value on Android following the implementation of ATT, with coefficients of 0.037 (TWFE

model) and 0.032 (Synthetic DiD model). To contextualize this observed effect, we perform a back-of-the-

envelope calculation. Given our dataset’s mean weekly rating count of 859, a 0.037 increase represents
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(a) Core Feature Improvement (b) Analytics

(c) Ads and Monetization (d) Data Intelligence

Note: The x-axis represents distribution of placebo effects and the y-axis represents the density.

Figure 9 The Placebo Test for the SDK Count on Android

approximately 127 users increasing their ratings by one additional star monthly (i.e., 859 ratings × 0.037

increase × 4 weeks). This effect is economically significant, especially considering rating stability in apps

with large install bases (e.g., Ruiz et al. 2015). Next, we apply winsorization to the weekly ratings at the

10th and 90th percentiles to address rating boundary deviations.14 Results remain consistent in columns (2)

and (4) for TWFE DiD and Synthetic DiD, respectively.

4.2.1. Falsification Test: Rating impact on apps that increase “intrusiveness”: We conduct a fal-

sification test by examining the rating of multihoming apps that increased their intrusiveness on Android.

14 Weekly RatingValue tend to deviate from the 1 and 5 boundary when Play Store removes flagged/fraudulent reviews.
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Joint significance test for pre-treatment variables is 0.75 (p = 0.70)

Figure 10 Parallel Trend on App Rating

Table 4 Impact of iOS ATT on Weekly Rating on Android

Matching + TWFE DiD Synthetic DiD
Dependent Variable Weekly Weekly Rating Weekly Weekly Rating

Rating (winsorized) Rating (winsorized)
(1) (2) (3) (4)

Multihoming×AT T Enacted 0.037∗∗ 0.152∗∗ 0.032∗∗ 0.125∗∗

(0.017) (0.063) (0.014) (0.056)
App Fixed Effects Y Y Y Y
Week Fixed Effects Y Y Y Y
Observations 229,528 229,528 322,400 322,400

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Standard Errors clustered around apps in parentheses for TWFE.

Bootstrapped Standard Errors with 100 replications in parentheses for Synthetic DiD.

We define “intrusiveness increase” as an increase in runtime permissions, Analytics SDKs, or Ad Network

SDKs beyond the pre-ATT median value for each app. Out of the 4,414 apps, 924 apps that exhibited this

behavior. So, we perform a triple difference analysis where we interact the DiD terms with the binary vari-

able Intrusivei which carries the value of 1 for treated apps that increase the intrusiveness. We present the

results in Appendix Table A7. Column (3) of Appendix Table A7 reveals a negative and significant impact

on app ratings for apps that increased intrusiveness on Android faced negative consequences, as seen by the

triple difference estimate. The sub-sample analyses on columns (1) and (2) provides similar insights.

4.2.2. Robustness Checks: As in section 4.1.3, we conduct multiple robustness checks. First, to ensure

that our findings are not an artifact of the weekly rating measurement, we use the raw value of RatingValue

as the dependent variable and re-estimate Equation 1. The results are presented in column (1) of Appendix
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Note: In each set, the left (green) coefficient is of TWFE DiD and the right (purple) one is of Synthetic DiD.

Figure 11 Coefficient Graph for Weekly Ratings - Longer Time Period (55 weeks)

Table A8. Next, we perform a log transformation of cumulative rating and present the results in column

(2) of Appendix Table A8. Both results are consistent with main findings. Next, we address potential auto-

correlation concerns as noted by Bertrand et al. (2004) by collapsing the time-series data into two time-

periods—before and after— and present the model estimation results in Appendix Table A9. The results

remain consistent with our main findings.

Finally, we conduct in-space placebo tests, as outlined in Section 4.1.3, to further validate the robustness

of our findings. The visual representations of these placebo tests for Weekly Ratings on Android and win-

sorized Weekly Ratings on Android, shown in Panels A and B of Appendix Figure A3 respectively, further

validate our findings. Consistent with what we found in section 4.1.3, the distributions of the placebo effects

are centered around zero. This strengthens our confidence that the observed effects are attributable to the

actual treatment and not any spurious correlations.

4.3. How does iOS ATT impact the Market Structure on Android via Spillover?

A pertinent question arises: why should competing platforms be concerned about such spillovers, especially

if they seem beneficial? In fact, our empirical analysis so far suggests precisely that: the improvements in
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multihoming apps on Android are likely driven by iOS ATT, creating a positive externality that enhances the

overall quality outcomes of the Android app ecosystem. Specifically, the introduction of iOS ATT, which

restricted third-party tracking, incentivized multihoming apps to adapt and focus on enhancing app features

(e.g., Kesler 2023) and investing in usage data collection to better understand user preferences and app

bottlenecks. Such strategy adaptations on iOS and their eventual adaptations on Android are straightforward

given the availability of a many tools like Google’s Flutter, which help apps maintain a common codebase.

The central concern lies in the impact that policies on one platform may have on the market structure of

the competing platform. Our analyses suggest that multihoming apps are “forced” to improve their utility on

iOS, which spills over to Android, whereas the Android exclusive apps do not have such a jolt. Multihoming

Android apps already held a substantial average market share of 64.79% among apps before ATT,15 because

of several factors, including visibility, reach and seamless user-experience when users move across mobile

platforms. Given this substantial market share, understanding how iOS policy could influence the market

structure on Android is crucial.

To examine the impact of iOS ATT on the market structure of Android, we analyze market concentra-

tion changes of the Android market using the Herfindahl-Hirschman Index (HHI). HHI, calculated as the

sum of the squares of the market shares of all apps in the Android market in a week, measures the market

concentration—higher values signify a more concentrated market, whereas a lower HHI indicates a more

competitive market, with downloads more evenly distributed among apps. Using weekly download esti-

mates of top 2,674 apps, we compute each app’s market share as its downloads relative to total market

downloads. We then measure the market concentration using the market shares, calculated as ∑i s2
i where

si is the market share of app i. As shown in Figure 12, we find that the average HHI, based on weekly

download estimates of the top 2,674 apps, increases from a mean value of 0.00675 before ATT to 0.0090

after ATT, which represents a 33% increase.

To rigorously test our intuition regarding the market concentration, we set up a panel regression by pre-

processing the 2,674 apps using matching techniques as outlined in Section 3.3 based on their pre-ATT

15 We calculate this based on the average downloads for the 2,674 apps in our dataset.
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The line represents the average HHI and the band represents 95% confidence interval.

Figure 12 Market Concentration in Android

rating, rating count, download estimate and permission count. This procedure results in a dataset of 2,334

apps included in the final analysis. Figure 13 confirms parallel pre-ATT trends.

We first examine if the market concentration changes reflect a “rich get richer” effect through

an exploratory app-level analysis of market share based on download estimates. For each app,

we calculate the average market share before-ATT (PreAT T Sharei) and after-ATT (PostAT T Sharei),

and compute the market share increase percentage, Marketshare Increase Pcti as (PostAT T Sharei −

PreAT T Sharei)/(PreAT T Sharei). We then estimate the regression model:

Marketshare Increase Pcti = γ log(PreAT T Sharei)+µi AppCategoryi + εi (4)

where, AppCategoryi represents app category dummy. As noted above, this exploratory analysis has one

observation per app. Panel (a) of Table 5 shows apps with higher pre-ATT market shares, as measured by

log(PreAT T Sharei), experienced larger percentage increases post-ATT.

Building on this exploratory analysis, we estimate a Fractional Logit model on the weekly market share

for each of the 2,334 apps. Fractional Logit Models are useful if the dependent variable is a fractional

value between 0 and 1 (Papke and Wooldridge 2008). Specifically, we utilize the mixed effect models, a
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class of statistical models that incorporate both fixed and random effects, allowing us to capture the unique

characteristics of each app and to incorporate random intercepts for each app in the model. Panel (b) of

Table 5 confirms an increasing market share for multihoming apps.

Table 5 Market Share Analysis

(a) Change in Market Share of Apps

Dependent Variable Marketshare Increase
(Percentage)

log(PreATTShare) 0.023∗∗∗

(0.006)

Category Fixed Effects Y
Observations 2,334

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(b) Impact of iOS ATT on Market Share

Fractional Logit
Dependent Variable Market share

Multihoming× 1.707∗∗∗

AT T Enacted (0.345)

App Mixed Effects Y
Week Fixed Effects Y
Observations 84,024

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Joint significance test for pre-treatment variables is 0.91 (p = 0.53)

Note: The x-axis represents time and the y-axis represents the effect size.

Figure 13 The Parallel Trend on App Download Estimate

Finally, we estimate the model (1) using the log transformed downloads as the dependent variable for

the matched 2,334 apps and present the results in Table 6. The result is positive and statistically significant:

multihoming apps experience a 26.49% boost in downloads per TWFE model in Column (1) (calculated

as (e0.235 − 1)× 100 = 26.49%) or a 15.95% boost in downloads per Synthetic DiD model in Column (2).

Robustness checks using collapsed panel data (Appendix Table A10) and in-space placebo tests (Appendix

Figure A4) confirm the robustness, with placebo distributions centered at zero.
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Table 6 Impact of iOS ATT on Downloads

Matching + TWFE DiD Synthetic DiD
log(Download) log(Download)

(1) (2)

Multihoming× 0.235∗∗∗ 0.148∗∗∗

AT T Enacted (0.037) (0.028)

App FE Y Y
Week FE Y Y
Observations 84,024 96,264

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Standard Errors clustered around apps in parentheses for TWFE.

Bootstrapped Standard Errors with 100 replications in parentheses for Synthetic DiD.

Overall, our analysis of the Android market structure reveals a significant increase in market concentra-

tion following the implementation of iOS ATT, driven by a substantial download boost for multihoming

apps compared to Android-exclusive apps. In other words, a privacy policy change on one platform can

hinder innovation and reduce user choice over time on a competing platform.

Market Concentration and Rating: One potential interpretation is that the increased market concen-

tration is not necessarily bad for consumers, as it is possible that the apps that lost market shares are the

inferior ones. If this interpretation is true, the increased marketshare should be driven by apps which had

higher rating prior to ATT. To test this possibility, we estimate the following model:

Marketshare Increase Pcti = γ PreAT T Ratingi +µi AppCategoryi + εi (5)

where PreAT T Ratingi is the mean rating of app i pre ATT. If γ is positive and significant, it asserts the

aforementioned interpretation that high quality apps are more likely to gain market shares, i.e., the market

being concentrated is a result of better apps becoming larger. Table 7 presents the results. The pre-ATT

rating does not meaningfully explain a change in the app’s marketshare, as seen by the insignificant γ . This

provides evidence that there is no correlation between app quality and change in market shares, i.e., it is

possible that apps with high pre-ATT rating also lose marketshare because of the lack of pressure from iOS

ATT to innovate.

5. Discussion and Conclusion

The landscape of private platform data collection policies is undergoing a major transformation, driven by

increasing consumer demand for greater control over their personal data (Madden and Rainie 2015). The



Mayya and Zhang: Privacy Spillovers across Competing Platforms
31

Table 7 Change in Market Share and Quality

Dependent Variable Marketshare Increase
(Percentage)

PreATTRating 0.013
(0.043)

Category Fixed Effects Y
Observations 2,334

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

literature has extensively explored the impact of these privacy policies on the focal platforms themselves,

with studies such as Aridor et al. (2024), Bian et al. (2021), Cheyre et al. (2023), Kesler (2023), Kircher

and Foerderer (2024), Leyden (2025), Tripathi and Kyriakou (2021) and Mayya and Viswanathan (2024),

providing valuable insights into the supply-side and demand-side effects of such policies. Concurrently,

the phenomenon of developer multihoming is witnessing an increasing incidence due to the availability

of modern cross-platform development tools, especially in the realm of mobile platforms. However, the

intersection of these tree trends—the evolving privacy landscape, the prevalence of multihoming, and the

explosion of popularity of cross-platform development tools—results in an complex interplay that has yet

to be fully explored. The potential for privacy policies to spill over across platforms, particularly through

shared codebases, raises interesting questions about their implications on platform ecosystems.

Whereas multimarket spillover due to regulations is not new—it is a classic topic that dates back to

Bernheim and Whinston (1990) and Genakos and Valletti (2011)—most research has focused on spillovers

of price-focused regulations. The extractive nature of price leads to an increase in price in the unaffected

market as spillover (Genakos and Valletti 2011). Multimarket spillovers because of data regulations, on the

other hand, is different and less studied. Its dual role—extractive, through targeted advertising, and produc-

tive, by enhancing personalization and user experience—fundamentally alters how developers strategically

respond to privacy policies, and therefore could have outcomes significantly different from conventional

economic models of compensatory price adjustments.

Ours is one of the first papers to study privacy spillovers in the context of competing smartphone plat-

forms. If developers, in response to stricter privacy policies on one platform, choose to decouple their

codebases and offset potential revenue losses by adopting more privacy-intrusive practices on competing
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platforms, it could significantly undermine user experiences and trust in competing platforms. Conversely,

if developers opt to enhance both app quality and user experience across all platforms in response to privacy

regulations on one of the platforms, it could benefit users on competing platforms through improved app

functionality and data practices. Given that spillovers have far-reaching consequences for both consumers

and platform owners, conducting a thorough empirical investigation of this phenomenon is imperative.

Our analysis of spillover effects reveals how developers adapt their Android strategies in response to iOS

ATT. The permissions analysis shows that multihoming apps significantly enhanced their normal permis-

sions usage. Normal permissions are used to obtain usage data, such as reading the network status (e.g.,

mobile data, no connection, etc.), phone status (e.g., carrier locked/unlocked), connectivity status (e.g.,

Bluetooth on/off, Wi-Fi Status, FM Radio, etc.) or app status (e.g., is an app operational). Normal permis-

sions are also used to perform activities such as toggling networks, turning on the flashlight, phone vibration,

or clearing the cache. All functionalities are used to enhance app utility without sensitive, personal data.

Similar to permission analysis, we analyze the use of integrated SDKs in apps. We observe a significant

boost in the use of core feature development SDKs.16 Core feature development SDKs assist apps with

tasks such as backend processes, communication, CRM, social engine as well as core development tasks

involving programming languages. Hence, an increase in such SDKs points towards enhancing app features.

We also observe a notable increase in the use of data intelligence SDKs, which leverage first-party real-time

sensor data to offer contextually relevant solutions directly benefiting users. The pattern is consistent with

the change in core feature development SDKs. Interestingly, we observe a decrease in the use of third-party

analytics SDKs on Android. The decrease indicates that developers move away from over-utilizing multiple

different third-party data analytics, given the marked drop in behavioral insights without cross-app tracking

in iOS. Given that these apps are forced to innovate on iOS, they find it efficient to push these improvements

to Android and minimize relying on extensive behavioral tracking. In addition, while researchers have noted

a decrease in ad network utilization on iOS following ATT implementation (e.g., Cheyre et al. 2023), we find

that the use of advertising and monetization SDKs remains stable on Android. This implies that developers

16 In an unreported test, we analyzed whether payment SDKs changed on Android, in line with Kesler (2023). We find no evidence
that Android apps increased payment SDKs.
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are not abandoning advertising and monetization strategies on Android because of iOS policy changes.

Overall, this strategic shift towards first-party usage data and away from third-party user data aligns with

the broader industry trend prioritizing user privacy and control over personal information. The two key

takeaways from our mechanism analyses are that (a) multihoming apps do not compensate for their revenue

loss on iOS by being intrusive on Android, and (b) apps do not fundamentally change their monetization

strategy on Android to focus on paid features, unlike in iOS (Aridor et al. 2024, Kesler 2023, Cheyre et al.

2023). Instead, they continue to rely on ad revenue.

Next, we investigate whether the utility enhancing spillovers to Android are noticeable to the Android

users. Indeed, multihoming apps experience significant increases in user ratings on Android after the imple-

mentation of iOS ATT policy. This supports our intuition that utility improvements made to multihoming

apps on iOS, in response to ATT’s stricter privacy regulations, reach Android versions due to the common

codebase. Given that hiring additional developers to maintain separate codebases for each platform could

be cost-prohibitive, this finding intuitively makes sense.

While the developers’ actions have a positive spillover on Android, we document a surprising unin-

tended consequence on Android’s market structure. Our analysis reveals that the Herfindahl-Hirschman

Index (HHI), a measure of market concentration, increases significantly for Android following the imple-

mentation of ATT on iOS. Specifically, the HHI rose significantly based on download estimates, indicating

that the Android app market became more concentrated after the iOS privacy policy change. This increased

concentration is driven by a substantial increase in downloads for multihoming apps, which rose by approxi-

mately 26.49% compared to Android-exclusive apps. While the short-term benefits for app users on Android

because of the “extraterritorial” policy are imminent because of quality enhancement, the medium- to long-

term impacts on users due to increased market concentration could be concerning to platform owners. This

is due to uncompetitive market structures that this spillover may create.

5.1. Implications for Research

Our study contributes meaningfully to the literature on privacy regulation, multihoming, and platform com-

petition, and addresses important gaps.
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First, existing scholarship on regulatory spillovers predominantly emphasizes compensatory adjustments

in pricing or product availability (Genakos and Valletti 2011). We extend this literature by uncovering and

documenting a new form of spillover—privacy spillovers—driven by the dual role of data as both a produc-

tive and extractive resource. By demonstrating how privacy spillovers diverge fundamentally from price-

based spillovers, our findings provide a new theoretical lens for understanding strategic interdependencies

among digital platforms.

Second, previous studies examining developer responses to privacy regulation have focused primarily on

single-platform adjustments, leaving unclear how such responses diffuse across platforms through shared

development resources (Cheyre et al. 2023, Kesler 2023). We explicitly fill this gap by empirically showing

how multihoming developers adopt unified strategies, transferring privacy-induced innovations from the

regulated platform (iOS) to an unregulated competing platform (Android). This expands our theoretical

understanding of multihoming behavior and highlights the centrality of shared codebases and cross-platform

development tools in shaping regulatory spillover effects.

Third, although prior research extensively explores direct impacts of privacy policies on consumers and

platform participants (e.g., Mayya and Viswanathan 2024), less attention has been paid to their indirect

competitive consequences on market structures. Our findings fill this gap by illustrating how seemingly

beneficial consumer-oriented privacy policies may unintentionally reinforce market dominance among mul-

tihoming developers. This enriches the discussion on digital market dynamics and structures.

5.2. Private Platform Policy and Practical Implications

For platform policymakers, our research underscores the need for a thorough understanding of the strategic

implications of competitors’ data collection policies. A key takeaway from our study is that a privacy-

enhancing policy enacted on one platform can influence the market structure of competing platforms.

Although the focus is often on enhancing privacy on the focal platform, we demonstrate that the spillover

effects on competing platforms can be significant. Even if a competitor’s policy change does not align with

the focal platform’s own revenue model, it is crucial to extensively evaluate and potentially implement sim-

ilar policies to prevent unintended negative impacts on platform-specific apps. Therefore, platforms should
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proactively monitor competitors’ policies to maintain a competitive edge while fostering a fair and thriving

app ecosystem.

From a strategic perspective, our findings highlight a potential avenue for using privacy-enhancing poli-

cies to gain a competitive edge over competing platforms. The impact of privacy spillovers on competing

platforms may depend on the underlying revenue model of that platform. We show that when platforms

such as iOS, on which apps are relatively less reliant on ad revenues, enhance privacy, they trigger a series

of events that lead to increased concentration within the competing platform’s app ecosystem. Especially

for competing platforms like Android, where ad revenue is the predominant revenue model, enhancing pri-

vacy may not be the most suitable approach. Nonetheless, our findings suggest that even platforms that are

less suited for privacy enhancement should carefully evaluate and potentially adopt a variant of the privacy

policy that aligns with their unique characteristics and revenue models. In a setting with only two dominant

players, such a proactive policy enactment may shield competing platforms from the strategic deployment

of privacy policies as a competitive weapon.

For app developers, especially those exclusively on one platform, a privacy-enhancing policy on an unre-

lated platform can also significantly affect their market standing. Staying informed about policy changes

on competing platforms is crucial, as these changes can indirectly affect their market position, necessitat-

ing proactive strategies to enhance their offerings. This involves actively monitoring industry publications,

engaging with developer communities, and participating in relevant conferences to keep themselves updated

not just on policy changes but also on best practices. As noted by Mayya and Viswanathan (2024), even

if implementing progressive policies may lead to a short-term revenue dip, it might be beneficial in the

medium to long term. In the process, our paper extends burgeoning research that documents developers’

strategies on focal platforms (Kesler 2023, Cheyre et al. 2023).

5.3. Future Research

Our research design focuses on the spillover effects of Apple’s ATT, aimed at privacy enhancement on iOS,

on the Android platform. Future research could extend this analysis to other contexts of supplier multihom-

ing, such as ride-hailing (e.g., Uber, Lyft), hospitality (e.g., Airbnb), and online education (e.g., Coursera),
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to examine the generalizability of our findings. Different markets may experience varying degrees of com-

petition, and the impact of privacy policy spillovers can become more or less pronounced depending on the

specific market dynamics.

In our context, only one of the two competing platforms introduced a policy change. Future research

could investigate contexts where both platforms introduce similar privacy-enhancing policies. This could

help determine whether the impact on market concentration is mitigated if both platforms were to adopt

comparable privacy measures. Such research could shed light on the competitive dynamics of privacy policy

enactments and their implications for market structure.

Third, our study focuses on free apps, as these are more directly affected by privacy policies that target

ad revenue models. However, investigating the spillover effects on paid apps may provide valuable insights

into consumer behavior and developer strategies. Future research could examine whether consumers of paid

apps are less sensitive to privacy changes and whether developers of paid apps adopt different strategies in

response to privacy policies on competing platforms.

Finally, we restrict our market-structure analysis to the top 2,674 apps to ensure that data quality from

any third-party vendor does not affect the analysis. Unlike ratings, permissions or the SDKs information,

true download data is available only with Google and developers, and download estimation tracking errors

increase with smaller apps. Furthermore, top 2600 apps cover over two-thirds of the downloads, so the

insights are unlikely to change significantly by including smaller apps in the long-tail. Future researchers

could collaborate with Android to run a large-scale study involving a broader pool of apps.
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Appendix

A. Appendix Figures and Tables

A.1. Appendix Figures

Figure A1 The distribution of rating value: our sample vs. global

Joint significance test for pre-treatment variables is 0.34 (p = 0.98)

Note: The x-axis represents time and the y-axis represents the count of ad network SDKs

Figure A2 The impact of ATT on the Ad Network SDKs on Android: Parallel Trends Graph
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(a) Weekly Ratings on Android (b) Weekly Ratings (Windsorized)

Note: The x-axis represents distribution of placebo effects and the y-axis represents the density

Figure A3 The Placebo Test for the Weekly Rating on Android

Figure A4 The Placebo Test for Download Estimate
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A.2. Appendix Tables

Table A1 Comparison of Apps in our sample versus the global distribution

Category Sample Global
TOOLS 12.63% 11.09%
ENTERTAINMENT 8.72% 10.70%
EDUCATION 9.74% 9.97%
PERSONALIZATION 4.28% 7.32%
BOOKS & REFERENCE 3.73% 6.72%
MUSIC & AUDIO 5.70% 6.40%
LIFESTYLE 4.15% 5.86%
FINANCE 5.75% 4.55%
PHOTOGRAPHY 6.13% 4.33%
PRODUCTIVITY 4.74% 3.59%
HEALTH & FITNESS 3.04% 3.08%
COMMUNICATION 3.94% 2.70%
SHOPPING 4.85% 2.64%
SOCIAL 3.43% 2.56%
BUSINESS 2.40% 2.52%
TRAVEL & LOCAL 3.22% 2.49%
NEWS & MAGAZINES 1.92% 2.08%
VIDEO PLAYERS & EDITORS 2.92% 2.05%
MAPS & NAVIGATION 1.69% 1.57%
FOOD & DRINK 1.52% 1.28%
MEDICAL 0.85% 1.13%
WEATHER 1.24% 1.10%
ART & DESIGN 0.77% 0.96%
AUTO & VEHICLES 0.58% 0.82%
DATING 0.60% 0.57%
BEAUTY 0.26% 0.42%
HOUSE & HOME 0.43% 0.40%
COMICS 0.28% 0.40%
PARENTING 0.21% 0.32%
LIBRARIES & DEMO 0.18% 0.26%
EVENTS 0.13% 0.12%

Games
SIMULATION 11.60% 11.47%
PUZZLE 10.54% 11.33%
CASUAL 13.49% 11.15%
SPORTS 5.62% 10.23%
ACTION 11.88% 8.15%
ARCADE 9.56% 7.85%
ADVENTURE 4.65% 6.76%
ROLE PLAYING 5.24% 5.42%
EDUCATIONAL 4.26% 5.10%
RACING 7.46% 4.00%
CARD 2.28% 3.49%
BOARD 2.65% 3.09%
STRATEGY 3.87% 2.85%
TRIVIA 1.32% 2.76%
WORD 2.61% 2.62%
CASINO 1.79% 2.51%
MUSIC 1.18% 1.22%

We exclude apps below 10000 downloads as most are experimental and one-time use apps (e.g., ICIS 2023 Mobile App).
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Table A2 Integrated SDK Categories and their Functionally Relevant Groups

Functionally Relevant Groups Explanation SDK Categories Example SDK

Core Feature Improvement These integrated SDKs are Backend Amazon AWS
used to provide a new feature Commerce Razorpay
or enhance the usability of Communication Telegram Passport
the existing features. CRM Salesforce Mobile

Development Tool Apache Commons IO
Game Engine Unreal Engine 4
Social WeChat by Tencent
Survey Survey Monkey

Analytics These integrated SDKs are Analytics Adobe Analytics
used to understand user behavior Attribution Appsflyer SDK
and enhance marketing efficiency Marketing Automation Mailchimp

Ads and Monetization This SDK is used to Ad Network Airpush
connect advertisers and publishers

Data Intelligence This SDK is used to generate real-time Data Intelligence Guardsquare
insights from the collected sensor data for
developers to offer contextual solutions

Table A3 Poisson Regression: Impact of iOS ATT on Permissions on Android

Matching + TWFE DiD
Overall Runtime Normal

Permissions Permissions Permissions
(1) (2) (3)

Multihoming× 0.008∗∗∗ -0.004 0.012∗∗∗

AT T Enacted (0.002) (0.004) (0.002)

App FE Y Y Y
Week FE Y Y Y
Observations 229,528 229,528 229,528
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard Errors clustered around apps in parenthesis.

Table A4 Impact of iOS ATT on Permissions on Android: Collapsing the Dataset

Matching + TWFE DiD
Overall Runtime Normal

Permissions Permissions Permissions
(1) (2) (3)

Multihoming× 0.070∗∗ 0.002 0.068∗∗

AT T Enacted (0.031) (0.009) (0.028)

App FE Y Y Y
Observations 17,656 17,656 17,656
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard Errors clustered around apps in parenthesis.
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Table A5 Zero-Inflated Poisson Regression: Impact of iOS ATT on Integrated SDKs on Android

Matching + TWFE DiD
Core Feature Analytics Ads and Data Intelligence
Improvement SDK Count Monetization SDK Count
SDK Count SDK Count

(1) (2) (3) (4)

Multihoming× 0.013∗∗∗ −0.029∗∗∗ 0.008 0.437∗∗∗

AT T Enacted (0.005) (0.011) (0.007) (0.067)

Observations 229,528 229,528 229,528 229,528
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard Errors for DiD in parenthesis.

Table A6 Impact of iOS ATT on Integrated SDKs on Android: Collapsing the Dataset

Matching + TWFE DiD
Core Feature Analytics Ads and Data Intelligence
Improvement SDK Count Monetization SDK Count
SDK Count SDK Count

(1) (2) (3) (4)

Multihoming× 0.044∗∗ −0.024∗∗∗ 0.014 0.003∗∗

AT T Enacted (0.022) (0.007) (0.017) (0.001)

App FE Y Y Y Y
Observations 17,656 17,656 17,656 17,656

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard Errors clustered around apps in parenthesis.

Table A7 Impact of iOS ATT on Rating on Android: Intrusiveness∗ Analysis

Matching + TWFE DiD
Increased Did not increase All Apps

Intrusiveness Intrusiveness
Weekly Rating Weekly Rating Weekly Rating

(1) (2) (3)

Multihoming× -0.039 0.058∗∗∗ 0.052∗∗∗

AT T Enacted (0.039) (0.019) (0.018)
Multihoming× -0.068∗∗

AT T Enacted × Intrusive (0.031)

App FE Y Y Y
Observations 48,048 181,480 229,528
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard Errors clustered around apps in parenthesis.
∗ As noted in Section 4.2.1, increased intrusiveness is measured as an increase in runtime permissions,

Analytics SDKs, or Ad Network SDKs beyond the pre-ATT median value for each app
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Table A8 Impact of iOS ATT on Rating on Android: Cumulative Rating

Matching + TWFE DiD
Dependent Variable Rating Value log(Rating Value)

(1) (2)

Multihoming× 0.004∗∗ 0.001∗

AT T Enacted (0.002) (0.0005)
App Fixed Effects Y Y
Week Fixed Effects Y Y
Observations 229,528 229,528

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard Errors clustered around apps in parenthesis.

Table A9 Impact of iOS ATT on Weekly Rating on Android: Collapsing the Dataset

Matching + TWFE DiD
Dependent Variable Weekly Weekly Rating

Rating (winsorized)
(1) (2)

Multihoming× 0.038∗∗ 0.152∗∗

AT T Enacted (0.017) (0.063)
App Fixed Effects Y Y
Observations 17,656 17,656

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard Errors clustered around apps in parenthesis.

Table A10 Impact of iOS ATT on Download: Collapsed Dataset

Matching + TWFE
Dependent Variable ln(Download)

Multihoming× 0.235∗∗∗

AT T Enacted (0.037)

App Fixed Effects Y
Week Fixed Effects Y
Observations 4,668

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard Errors clustered around apps in parenthesis.
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B. Classifying Categories

The primary task is to determine the category of SDKs using their descriptions. The box below presents the annotation

guidelines and the prompt that we used in employing LLMs for this classification task, developed using the guidelines

by (Cheng et al. 2024). The prompt is as follows:

You are an experienced software engineer with extensive contributions to mobile app

development projects. You will receive the name of an integrated mobile SDK along with

its description. Your task is to meticulously analyze the description and classify the

SDK into one of the categories that apply from a list of four categories: Core Feature

Development, Analytics, Advertising and Monetization, and Data Intelligence, based on

its purpose or usage. Remember that an SDK might belong to more than one category, but

be sure to tag the most appropriate category based on its functionality and intended

use.

1. Core Feature Development: SDKs that provide essential functionalities for users'

utility. Core Feature Development SDKs can help improve the functionalities such as

simplifying the integration of backend services, audio and video editing features,

providing solutions for commerce, enabling in-app messaging, voice, and video calls

between users, managing customer relationships, improving code development workflows,

offering tools for game development, graphic rendering and immersive experiences,

integrating social media functionalities, including sharing, liking, and posting,

creating, distributing, and analyzing surveys within apps.

2. Analytics: SDKs that help data collection to understand user behavior and optimize

performance. Analytics SDKs can help improve the functionalities such as, attributing

user actions back to advertising campaigns or referral sources, automating marketing

tasks and workflows based on user behavior, and crash reporting and user flow tracking.

3. Advertising and Monetization: SDKs that enable monetization through displaying

advertisements. Advertising and Monetization SDKs can also help sampling apps or games

via displaying advertisements, targeted promotions, as well as providing tools for

marketing automation including geofencing.

https://arxiv.org/abs/2402.08379
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4. Data Intelligence: SDKs that automatically generate real-time insights from the

collected sensor data, such as location or connectivity data, which can be used by

developers to offer contextual solutions.

Additionally, if you strongly feel that the SDK may also belong to a second category,

you can provide the potential second category and justify it in the reason.

Your response should be in a valid JSON format and strictly contain only the JSON,

with all string values enclosed in double quotes. The response must include the 'id'

(a string), 'category' (a string), 'potential_second_category' (a string), and

'reason' (a string). For example:

{

\"id\": \"digiIntelligence SDK\",

\"category\": \"Data Intelligence\",

\"potential_second_category\": \"None\",

\"reason\": \"This SDK offers real-time asset tracking solutions designed for every

business.\"

}

Remember to consider the context and implications of each description while

categorizing the SDK. Do not include a double quote or commas inside the reason.

To choose the best model, we benchmarked some of their performances against human tagging. We first randomly

selected 150 SDKs and their descriptions and got them tagged by three expert human annotators. We then compared

the outcome from five different LLMs (GPT 4o, GPT 4.1, GPT o3, GPT o1, Deepseek R1 and Deepseek V3) with

human tags and found that GPT o1 outperformed the other LLMs. Table B1 shows the outcomes of the model and

the Cohen’s Kappa for the agreement between expert human annotators and the LLM predictions. The Cohen’s Kappa

is above 0.6 for gpt o1 model, which puts the agreement at the “substantial” level, as noted in extant research (e.g.,

Cohen 1960, McHugh 2012). As a result, we employed gpt o1 for our annotation task. Table B2 presents the model

details. The total input SDKs uploaded to the model for the entire process were around 1305 SDKs. The total output

SDKs generated by the model were approximately 1305 SDKs.

https://doi.org/10.2307/2529310
https://doi.org/10.1111/j.2044-8317.2012.02063.x
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Table B1 The accuracy of LLMs compared to human annotated ground truth.

Model Agreement Rate Cohen’s Kappa

deepseek-reasoner (deepseek-r1) 83.33% 0.73

deepseek-chat (deepseek-v3) 83.33% 0.73

gpt-4o-2024-08-06 83.33% 0.74

gpt-4.1-2025-04-14 86.00% 0.77

gpt-o3 (o3-2025-04-16) 88.00% 0.81

gpt-o1 (o1-2024-12-17) 89.33% 0.83

Table B2 The Model Parameters

Model Endpoint Top-p Frequency Penalty Presence Penalty

o1-2024-12-17 chat completion 1.0 0.0 0.0
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